55,693 research outputs found

    Count-Based Exploration in Feature Space for Reinforcement Learning

    Full text link
    We introduce a new count-based optimistic exploration algorithm for Reinforcement Learning (RL) that is feasible in environments with high-dimensional state-action spaces. The success of RL algorithms in these domains depends crucially on generalisation from limited training experience. Function approximation techniques enable RL agents to generalise in order to estimate the value of unvisited states, but at present few methods enable generalisation regarding uncertainty. This has prevented the combination of scalable RL algorithms with efficient exploration strategies that drive the agent to reduce its uncertainty. We present a new method for computing a generalised state visit-count, which allows the agent to estimate the uncertainty associated with any state. Our \phi-pseudocount achieves generalisation by exploiting same feature representation of the state space that is used for value function approximation. States that have less frequently observed features are deemed more uncertain. The \phi-Exploration-Bonus algorithm rewards the agent for exploring in feature space rather than in the untransformed state space. The method is simpler and less computationally expensive than some previous proposals, and achieves near state-of-the-art results on high-dimensional RL benchmarks.Comment: Conference: Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17), 8 pages, 1 figur

    Code optimisation in a nested-sampling algorithm

    Get PDF
    The speed-up in program running time is investigated for problems of parameter estimation with Nested Sampling Monte Carlo methods. The example used in this study is to extract a polarization observable from event-by-event data from meson photoproduction reactions. Various implementations of the basic algorithm were compared, consisting of combinations of single threaded vs multi-threaded, and CPU vs GPU versions. These were implemented in OpenMP and OpenCL. For the application under study, and with the number of events as used in our work, we find that straightforward multi-threaded CPU OpenMP coding gives the best performance; for larger numbers of events, OpenCL on the CPU performs better. The study also shows that there is a “break-even” point of the number of events where the use of GPUs helps performance. GPUs are not found to be generally helpful for this problem, due to the data transfer times, which more than offset the improvement in computation time

    PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network

    Full text link
    We present PyCARL, a PyNN-based common Python programming interface for hardware-software co-simulation of spiking neural network (SNN). Through PyCARL, we make the following two key contributions. First, we provide an interface of PyNN to CARLsim, a computationally-efficient, GPU-accelerated and biophysically-detailed SNN simulator. PyCARL facilitates joint development of machine learning models and code sharing between CARLsim and PyNN users, promoting an integrated and larger neuromorphic community. Second, we integrate cycle-accurate models of state-of-the-art neuromorphic hardware such as TrueNorth, Loihi, and DynapSE in PyCARL, to accurately model hardware latencies that delay spikes between communicating neurons and degrade performance. PyCARL allows users to analyze and optimize the performance difference between software-only simulation and hardware-software co-simulation of their machine learning models. We show that system designers can also use PyCARL to perform design-space exploration early in the product development stage, facilitating faster time-to-deployment of neuromorphic products. We evaluate the memory usage and simulation time of PyCARL using functionality tests, synthetic SNNs, and realistic applications. Our results demonstrate that for large SNNs, PyCARL does not lead to any significant overhead compared to CARLsim. We also use PyCARL to analyze these SNNs for a state-of-the-art neuromorphic hardware and demonstrate a significant performance deviation from software-only simulations. PyCARL allows to evaluate and minimize such differences early during model development.Comment: 10 pages, 25 figures. Accepted for publication at International Joint Conference on Neural Networks (IJCNN) 202

    Evidence of coevolution in multi-objective evolutionary algorithms

    Get PDF
    This paper demonstrates that simple yet important characteristics of coevolution can occur in evolutionary algorithms when only a few conditions are met. We find that interaction-based fitness measurements such as fitness (linear) ranking allow for a form of coevolutionary dynamics that is observed when 1) changes are made in what solutions are able to interact during the ranking process and 2) evolution takes place in a multi-objective environment. This research contributes to the study of simulated evolution in a at least two ways. First, it establishes a broader relationship between coevolution and multi-objective optimization than has been previously considered in the literature. Second, it demonstrates that the preconditions for coevolutionary behavior are weaker than previously thought. In particular, our model indicates that direct cooperation or competition between species is not required for coevolution to take place. Moreover, our experiments provide evidence that environmental perturbations can drive coevolutionary processes; a conclusion that mirrors arguments put forth in dual phase evolution theory. In the discussion, we briefly consider how our results may shed light onto this and other recent theories of evolution

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Parallelizing RRT on distributed-memory architectures

    Get PDF
    This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Using fast and accurate simulation to explore hardware/software trade-offs in the multi-core era

    Get PDF
    Writing well-performing parallel programs is challenging in the multi-core processor era. In addition to achieving good per-thread performance, which in itself is a balancing act between instruction-level parallelism, pipeline effects and good memory performance, multi-threaded programs complicate matters even further. These programs require synchronization, and are affected by the interactions between threads through sharing of both processor resources and the cache hierarchy. At the Intel Exascience Lab, we are developing an architectural simulator called Sniper for simulating future exascale-era multi-core processors. Its goal is twofold: Sniper should assist hardware designers to make design decisions, while simultaneously providing software designers with a tool to gain insight into the behavior of their algorithms and allow for optimization. By taking architectural features into account, our simulator can provide more insight into parallel programs than what can be obtained from existing performance analysis tools. This unique combination of hardware simulator and software performance analysis tool makes Sniper a useful tool for a simultaneous exploration of the hardware and software design space for future high-performance multi-core systems
    • …
    corecore