3,609 research outputs found

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Invited Perspective: Building sustainable and resilient communities – Recommended actions for natural hazard scientists

    Get PDF
    Reducing disaster risk is critical to securing the ambitions of the Sustainable Development Goals (SDGs), and natural hazard scientists make a key contribution to achieving this aim. Understanding Earth processes and dynamics underpins hazard analysis, which (alongside analysis of other disaster risk drivers) informs the actions required to manage and reduce disaster risk. Here we suggest how natural hazard research scientists can better contribute to the planning and development of sustainable and resilient communities through improved engagement in disaster risk reduction (DRR). Building on existing good practice, this perspective piece aims to provoke discussion in the natural hazard science community about how we can strengthen our engagement in DRR. We set out seven recommendations for enhancing the integration of natural hazard science into DRR: (i) characterise multi-hazard environments, (ii) prioritise effective, positive, long-term partnerships, (iii) understand and listen to your stakeholders, (iv) embed cultural understanding into natural hazards research, (v) ensure improved and equitable access to hazards information, (vi) champion people-centred DRR (leaving no one behind), and (vii) improve links between DRR and sustainable development. We then proceed to synthesise key actions that natural hazards scientists and research funders should consider taking to improve education, training, and research design, and to strengthen institutional, financial and policy actions. We suggest that these actions should help to strengthen the effective application of natural hazards science to reduce disaster risk. By recognising and taking steps to address the issues raised in these recommendations, we propose that the natural hazard science community can more effectively contribute to the inter/transdisciplinary, integrated work required to improve DR

    Spatial Solutions for the Environmental Protection Agency “Brownfields to Healthfields” Program: Utilization of Mixed Methods to Assess Application Effectiveness and Usability

    Get PDF
    Geographic Information Systems (GIS) can serve as a planning tool to promote community health at many levels, such as the policy, organizational and public levels. The Brownfields to Healthfields (B2H) program involves creating new opportunities to support community public health, including the development of park spaces and new hospital facilities. However, there was no existing portal for organizations to access a map of brownfields data to meet the required criteria of the organization in seeking a space for transformation to a “healthfield” or other public services facility. Since the various types of community and demographic data were scattered, it was necessary to combine the data in a web application available to all stakeholders. This paper discusses the utilization of a new concept of operation, which includes participative and volunteered approaches that are addressed to include the contribution of various stakeholder groups, and to further improve planning for public health.

    Exploring the data needs and sources for severe weather impact forecasts and warnings : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Figures 2.4 & 2.5 are re-used with permission.The journal articles in Appendices J, L & M are republished under respective Creative Commons licenses. Appendix K has been removed from the thesis until 1 July 2022 in accordance with the American Meteorological Society Copyright Policy, but is available open access at https://doi.org/10.1175/WCAS-D-21-0093.1Early warning systems offer an essential, timely, and cost-effective approach for mitigating the impacts of severe weather hazards. Yet, notable historic severe weather events have exposed major communication gaps between warning services and target audiences, resulting in widespread losses. The World Meteorological Organization (WMO) has proposed Impact Forecasts and Warnings (IFW) to address these communication gaps by bringing in knowledge of exposure, vulnerability, and impacts; thus, leading to warnings that may better align with the position, needs, and capabilities of target audiences. A gap was identified in the literature around implementing IFWs: that of accessing the required knowledge and data around impacts, vulnerability, and exposure. This research aims to address this gap by exploring the data needs of IFWs and identifying existing and potential data sources to support those needs. Using Grounded Theory (GT), 39 interviews were conducted with users and creators of hazard, impact, vulnerability, and exposure (HIVE) data within and outside of Aotearoa New Zealand. Additionally, three virtual workshops provided triangulation with practitioners. In total, 59 people participated in this research. Resulting qualitative data were analysed using GT coding techniques, memo-writing, and diagramming. Findings indicate a growing need for gathering and using impact, vulnerability, and exposure data for IFWs. New insight highlights a growing need to model and warn for social and health impacts. Findings further show that plenty of sources for HIVE data are collected for emergency response and other uses with relevant application to IFWs. Partnerships and collaboration lie at the heart of using HIVE data both for IFWs and for disaster risk reduction. This thesis contributes to the global understanding of how hydrometeorological and emergency management services can implement IFWs, by advancing the discussion around implementing IFWs as per the WMO’s guidelines, and around building up disaster risk data in accordance with the Sendai Framework Priorities. An important outcome of this research is the provision of a pathway for stakeholders to identify data sources and partnerships required for implementing a hydrometeorological IFW system

    the case of Brazil

    Get PDF
    The authors are grateful for the participation of the people who sent photos of the localities affected by the oil spill disaster and are also grateful for the support of the Laboratory of Cartography of the Federal University of Rio de Janeiro (GeoCart-UFRJ). Specifically, Dra. Raquel Souto is grateful for the assistance granted by the Coordination for the Improvement of Higher Education Personnel, through the Brazilian National Post-doctoral Program, which made it possible to carry out this and other research on participatory mapping in the last three years. Publisher Copyright: © 2022, Academia Brasileira de Ciencias. All rights reserved.Many maritime disasters lead to oil pollution, which undermines ecosystem balance, human health, the prosperity of countries and coastal areas across borders, and people’s livelihoods. This is a problem that affects the whole world. Governments must strive to ensure that operations in the marine environment are safe and avoid oil pollution by adopting methods that anticipate future scenarios to mitigate the effects of this pollution when it occurs. This study investigates a method of managing contaminated coastal areas, aiming to contribute to the management of the environmental crisis caused by disasters through the use of online collaborative mapping by volunteer collaborators. Volunteer collaborators have been sending georeferenced data and photographs of locations affected by pollution.publishersversionpublishe

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    Team Performance in Flood Emergency Response: A Conceptual Model and Scale Development

    Get PDF
    Based on the literature on knowledge integration, social media, and emergency management, the purpose of this paper to present our conceptual model of EM team performance and propose a rigorous approach in scale development and validation it, scale which can be used to assess organizations volunteer and staff work on flood field used social media. This study conceptualizes the construct of EM team performance and generates an initial 39 item EM task scale. Based on the sample data, this study provides an empirical validation of the EMTP constructs and its underlying dimensionality, and develops a generic EMT scale with desirable psychometric properties, including face validity, content validity and pilot testing.This study develops and validates a 30-item EM task scale with 6 constructs (task characteristic, task technology, task technology fit, social media usage, knowledge integration and EM team performance). This study is a pioneering effort to develop and validate EMTP scale and will contribute to the development of knowledge integration literature and add to the repository of rigorous research instruments for researcher’s utilization
    corecore