8,870 research outputs found

    On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications

    Full text link
    In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and im- plementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning

    The legacy of 50 years of fuzzy sets: A discussion

    Get PDF
    International audienceThis note provides a brief overview of the main ideas and notions underlying fifty years of research in fuzzy set and possibility theory, two important settings introduced by L.A. Zadeh for representing sets with unsharp boundaries and uncertainty induced by granules of information expressed with words. The discussion is organized on the basis of three potential understanding of the grades of membership to a fuzzy set, depending on what the fuzzy set intends to represent: a group of elements with borderline members, a plausibility distribution, or a preference profile. It also questions the motivations for some existing generalized fuzzy sets. This note clearly reflects the shared personal views of its authors

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    New closeness coefficients for fuzzy similarity based fuzzy TOPSIS: an approach combining fuzzy entropy and multidistance

    Get PDF
    This paper introduces new closeness coefficients for fuzzy similarity based TOPSIS. The new closeness coefficients are based on multidistance or fuzzy entropy, are able to take into consideration the level of similarity between analysed criteria, and can be used to account for the consistency or homogeneity of, for example, performance measuring criteria. The commonly known OWA operator is used in the aggregation process over the fuzzy similarity values. A range of orness values is considered in creating a fuzzy overall ranking for each object, after which the fuzzy rankings are ordered to find a final linear ranking. The presented method is numerically applied to a research and development project selection problem and the effect of using two new closeness coefficients based on multidistance and fuzzy entropy is numerically illustrated

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference

    Decision Rules for Supplier Selection Using Intuitionistic Fuzzy TOPSIS

    Get PDF
    This paper provides a methodology for addressing contradiction in the ranking of suppliers when more than one metric functions are adopted in intuitionistic fuzzy TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution) for supplier selection. Our literature search revealed contradictions when more than one metric functions are adopted in the method.  Two types of contradictions were addressed: (i) contradiction of the best supplier, and (ii) contradiction at the middle of the park.  Decision rules algorithms were developed to address the problems.Worked examples were given to illustrate the rules for resolving the contradiction. A major thrust of this paper is the adoption of odd number of metric functions with the use of the ballot strategy. This paper use three metric functions which are Spherical, Euclidean and Hamming metric fuctions. In case of contradiction, the alternatve that gives majority of same rank with respect to the metrics fuctions  is selected.Keywords: Supplier Selection; Intuitionistic fuzzy TOPSIS; Metric Functions; Contraditions; contradiction of best alternatives; contradiction at the middle of the park
    • …
    corecore