1,249 research outputs found

    Performance of a time-of-arrival technique for positioning WLAN terminals

    Get PDF
    Nowadays, several systems are available for outdoor location (i.e GPS, cellular networks based…). However, there is no proper location system for indoor scenarios. The technique presented in this paper proposes the use of the existing wireless LAN infrastructure with minor changes to provide an accurate estimation of the location of mobile devices in indoor environments. This technique is based on round-trip time (RTT) measurements, which are used to estimate TOA and distances between the device to be located and WLAN access points. To avoid the cumbersome modification of the physical layer, each RTT is estimated between the transmission of an IEEE 802.11 link layer data frame and the reception of the associated acknowledgement (ACK). By applying trilateration algorithms, an accurate estimation of the mobile position is calculated.Peer ReviewedPostprint (published version

    Using time-of-flight for WLAN localization: feasibility study

    Get PDF
    Although signal strength based techniques are widely employed for WLAN localization, they generally suffer from providing highly accurate location information. In this paper, we first present the general shortcomings of the signal strength based approaches used for WLANbased localization and then state reasons why time-of-flight could be an attractive alternative. We subsequently analyze the feasibility of using time-of-flight technique for WLAN localization by synchronizing the clock using Network Time Protocol (NTP) as well as measuring the time at (i) network layer level, (ii) data link layer level, and (iii) firmware level. We conclude that at present using TOF is not a feasible approach because of the limitation of current hardware and protocols

    A ranging method with IEEE 802.11 data frames for indoor localization

    Get PDF
    IEEE 802.11 networks constitute a suitable infrastructure for accurate indoor positioning. However, existing approaches based on fingerprinting present drawbacks that make them not suitable for most of applications. This paper presents an innovative TOA-based ranging technique over IEEE 802.11 networks intended to be the essential step of an indoors location system. This approach is based on round trip time measurements using standard IEEE 802.11 link layer frames and a statistical post-processing to mitigate the noise of the measurements. A prototype has been implemented in order to assess the validity and evaluate the performance of the proposed technique. First results show ranging accuracies of less than one meter of error in LOS situations

    Identification and Mitigation of NLOS based on Channel Information Rules for Indoor UWB Localization

    Get PDF
    Indoor localization is an emerging technology that can be utilized for developing products and services for commercial usage, public safety, military applications and so forth. Commercially it can be applied to track children, people with special needs, help navigate blind people, locate equipment, mobile robots, etc. The objective of this thesis is to enable an indoor mobile vehicle to determine its location and thereby making it capable of autonomous localization under Non-light of sight (NLOS) conditions. The solution developed is based on Ultra Wideband (UWB) based Indoor Positioning System (IPS) in the building. The proposed method increases robustness, scalability, and accuracy of location. The out of the box system of DecaWave TREK1000 provides tag tracking features but has no method to detect and mitigate location inaccuracies due to the multipath effect from physical obstacles found in an indoor environment. This NLOS condition causes ranges to be positively biased, hence the wrong location is reported. Our approach to deal with the NLOS problem is based on the use of Rules Classifier, which is based on channel information. Once better range readings are achieved, approximate location is calculated based on Time of Flight (TOF). Moreover, the proposed rule based IPS can be easily implemented on hardware due to the low complexity. The measurement results, which was obtained using the proposed mitigation algorithm, show considerable improvements in the accuracy of the location estimation which can be used in different IPS applications requiring centimeter level precision. The performance of the proposed algorithm is evaluated experimentally using an indoor positioning platform in a laboratory environment, and is shown to be significantly better than conventional approaches. The maximum positioning error is reduced to 15 cm for NLOS using both an offline and real time tracking algorithm extended from the proposed approach
    • …
    corecore