17 research outputs found

    Measuring Occupants' Behaviour for Buildings' Dynamic Cosimulation

    Get PDF
    Measuring and identifying human behaviours are key aspects to support the simulation processes that have a significant role in buildings' (and cities') design and management. In fact, layout assessments and control strategies are deeply influenced by the prediction of building performance. However, the missing inclusion of the human component within the building-related processes leads to large discrepancies between actual and simulated outcomes. This paper presents a methodology for measuring specific human behaviours in buildings and developing human-in-the-loop design applied to retrofit and renovation interventions. The framework concerns the detailed building monitoring and the development of stochastic and data-driven behavioural models and their coupling within energy simulation software using a cosimulation approach. The methodology has been applied to a real case study to illustrate its applicability. A one-year monitoring has been carried out through a dedicated sensor network for the data recording and to identify the triggers of users' actions. Then, two stochastic behavioural models (i.e., one for predicting light switching and one for window opening) have been developed (using the measured data) and coupled within the IESVE simulation software. A simplified energy model of the case study has been created to test the behavioural approach. The outcomes highlight that the behavioural approach provides more accurate results than a standard one when compared to real profiles. The adoption of behavioural profiles leads to a reduction of the discrepancy with respect to real profiles up to 58% and 26% when simulating light switching and ventilation, respectively, in comparison to standard profiles. Using data-driven techniques to include the human component in the simulation processes would lead to better predictions both in terms of energy use and occupants' comfort sensations. These aspects can be also included in building control processes (e.g., building management systems) to enhance the environmental and system management

    Content validation of the user attitudinal component and factors in green building

    Get PDF
    The green building performance gap has been well acknowledged in building industry and one of the contributors to these issues is the behaviour of users in the building. One of the element that influences the behaviour of users is the attitude of the user towards the building environment. The consideration of the human aspects especially the user attitudinal component and factor is essential as an approach in improving the building performance. This paper aims to identify the user attitudinal component and factor from the literature and to validate the research instrument by using the content validation method. The procedure of content validity include the conceptualization and development of instrument throughout an extensive literature review and to validate the relevance of the user attitudinal component and factors to be considered in green buildings. Three user attitudinal components and seventeen factors were developed from the extensive review of the literature. Ten experts were chosen to appraise the instrument of research by using a quantitative content validation. Fifteen items were accepted as relevant to the study within the accepted range and two items were eliminated from the research instrument. The study’s output allows the building industry a new insight on what user attitudinal aspect to be considered and integrated when dealing in the development of green building. The output of this study greatly benefits the building designers and managers when designing, constructing and managing green buildings

    Passive cooling techniques to improve resilience of nZEBs in Belgium

    Full text link
    peer reviewedNowadays, buildings are responsible for 40% of energy consumption in the European Union, according to the International Energy Agency (IEA). The urge to build more energyefficient buildings resulted in the emergence of nearly zero-energy buildings (nZEB). However, the specifications the nZEB design should comply with might not be sufficient to prevent the risk of overheating in summer. To limit the energy consumption rise linked to the upcoming cooling demand increase, passive cooling techniques can be used instead of active ones, that are characterised by a high energy consumption. Passive cooling techniques are investigated through a dynamic simulation of a nearly zero-energy dwelling in Belgium. Their efficiency is assessed based on their ability to improve thermal comfort. The passive cooling techniques can be combined to ensure the resilience of the building to global warming. It was found that the most efficient techniques are the ones relying on ventilative cooling. Solar protections and smart glazing also offer an efficient protection against overheating. The effectiveness of the combined passive cooling techniques is studied over an extreme meteorological event, which is likely to occur by 2100 in Belgium if nothing is done to prevent global warming. Twenty days of intense heat are studied to evaluate the resilience of an nZEB. It was found that the most efficient combination includes night cooling, thermochromic glazing and indirect evaporative cooling. Those techniques allow to decrease the indoor temperature by almost 10 K

    Adaptive comfort control implemented model (ACCIM) for energy consumption predictions in dwellings under current and future climate conditions: A case study located in Spain

    Get PDF
    Currently, the knowledge of energy consumption in buildings of new and existing dwellings is essential to control and propose energy conservation measures. Most of the predictions of energy consumption in buildings are based on fixed values related to the internal thermal ambient and pre-established operation hypotheses, which do not reflect the dynamic use of buildings and users’ requirements. Spain is a clear example of such a situation. This study suggests the use of an adaptive thermal comfort model as a predictive method of energy consumption in the internal thermal ambient, as well as several operation hypotheses, and both conditions are combined in a simulation model: the Adaptive Comfort Control Implemented Model (ACCIM). The behavior of ACCIM is studied in a representative case of the residential building stock, which is located in three climate zones with different characteristics (warm, cold, and mild climates). The analyses were conducted both in current and future scenarios with the aim of knowing the advantages and limitations in each climate zone. The results show that the average consumption of the current, 2050, and 2080 scenarios decreased between 23% and 46% in warm climates, between 19% and 25% in mild climates, and between 10% and 29% in cold climates by using such a predictive method. It is also shown that this method is more resilient to climate change than the current standard. This research can be a starting point to understand users’ climate adaptation to predict energy consumption

    Algorithm to simulate occupant behavior in mixed-mode office buildings

    Get PDF

    Modeling Multiple Occupant Behaviors in Buildings for increased Simulation Accuracy: An Agent-Based Modeling Approach

    Get PDF
    The dissertation addresses the limitation of current building energy simulation programs in accounting for occupant behaviors, which have been identified as having significant impact on the overall building energy performance. It introduces a new simulation methodology using an agent- based modeling approach that helps to both predict real-world occupant behaviors observed in an operating building and to calculate behavior impact on energy use and occupant comfort. A series of experiments has been conducted using the new methodology and yielded simulation results that not only distinguish themselves from current simulation practices, but also uncover emerging phenomena that enhance the insights on building dynamics

    Predictive Control methods for Building Control and Demand Response

    Get PDF
    This thesis studies advanced control techniques for the control of building heating and cooling systems to provide demand response services to the power network. It is divided in three parts. The first one introduces the MATLAB toolbox OpenBuild which aims at facilitating the design and validation of predictive controllers for building systems. In particular, the toolbox constructs models of building that are appropriate for use in predictive controllers, based on standard building description data files. It can also generate input data for these models that allows to test controllers in a variety of weather and usage scenarios. Finally, it offers co-simulation capability between MATLAB and EnergyPlus in order to test the controllers in a trusted simulation environment, making it a useful tool for control engineers and researchers who want to design and test building controllers in realistic simulation scenarios. In the second part, the problem of robust tracking commitment is formulated: it consists of a multi-stage robust optimization problem for systems subject to uncertainty where the set where the uncertainty lies is part of the decision variables. This problem formulation is inspired by the need to characterize how an energy system can modify its electric power consumption over time in order to procure a service to the power network, for example Demand Response or Reserve Provision. A method is proposed to solve this problem where the key idea is to modulate the uncertainty set as the image of a fixed uncertainty set by a modifier function, which allows to embed the modifier function in the controller and by doing so convert the problem into a standard robust optimization problem. The applicability of this framework is demonstrated in simulation on a problem of reserve provision by a building. We finally detail how to derive infinite horizon guarantees for the robust tracking commitment problem. The third part of thesis reports the experimental works that have been conducted on the Laboratoire d'Automatique Demand Response (LADR) platform, a living lab equipped with sensors and a controllable heating system. These experiments implement the algorithms developed in the second part of the thesis to characterize the LADR platform flexibility and demonstrate the closed-loop control of a building heating system providing secondary frequency control to the Swiss power network. In the experiments, we highlight the importance of being able to adjust the power consumption baseline around which the flexibility is offered in the intraday market and show how flexibility and comfort trade off

    Learning Environment Design and Use

    Get PDF
    Amid burgeoning international interest in the built environment of education, this SI examines the research, policy, and practice that lies behind the global trends in architecture and pedagogy. It contributes to the developing interdisciplinary understanding of the processes and products of school design at all stages, from ‘visioning’ and brief, through habitation and use, to post-occupancy evaluation. The intention is to build knowledge relating to successful design, educational affordances and outcomes, change management, and the alignment of physical resources with teaching and learning needs. The papers explore the multiprofessional landscape of educational spaces as they are planned, built, and used. Reflecting the diversity of the area, the SI features empirical work using a range of methodologies, transdisciplinary work and novel theoretical framings. It includes co-authored papers whose authorship bridges academic disciplines, research and practice, or research and policy. The over-arching aim was to capture the diversity of research related to learning environments
    corecore