4,365 research outputs found

    Analysing Lexical Semantic Change with Contextualised Word Representations

    Get PDF
    This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.Comment: To appear in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL-2020

    Bayesian phylolinguistics infers the internal structure and the time-depth of the Turkic language family

    No full text
    Despite more than 200 years of research, the internal structure of the Turkic language family remains subject to debate. Classifications of Turkic so far are based on both classical historical–comparative linguistic and distance-based quantitative approaches. Although these studies yield an internal structure of the Turkic family, they cannot give us an understanding of the statistical robustness of the proposed branches, nor are they capable of reliably inferring absolute divergence dates, without assuming constant rates of change. Here we use computational Bayesian phylogenetic methods to build a phylogeny of the Turkic languages, express the reliability of the proposed branches in terms of probability, and estimate the time-depth of the family within credibility intervals. To this end, we collect a new dataset of 254 basic vocabulary items for thirty-two Turkic language varieties based on the recently introduced Leipzig–Jakarta list. Our application of Bayesian phylogenetic inference on lexical data of the Turkic languages is unprecedented. The resulting phylogenetic tree supports a binary structure for Turkic and replicates most of the conventional sub-branches in the Common Turkic branch. We calculate the robustness of the inferences for subgroups and individual languages whose position in the tree seems to be debatable. We infer the time-depth of the Turkic family at around 2100 years before present, thus providing a reliable quantitative basis for previous estimates based on classical historical linguistics and lexicostatistics

    Stylistic variation over 200 years of court proceedings according to gender and social class

    Get PDF
    We present an approach to detect stylistic variation across social variables (here: gender and social class), considering also diachronic change in language use. For detection of stylistic variation, we use relative entropy, measuring the difference between probability distributions at different linguistic levels (here: lexis and grammar). In addition, by relative entropy, we can determine which linguistic units are related to stylistic variation.This research is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) under grants SFB1102: Information Density and Linguistic Encoding (www.sfb1102.uni-saarland.de) and the start-up grant for research projects from Saarland University

    Using relative entropy for detection and analysis of periods of diachronic linguistic change

    Get PDF
    We present a data-driven approach to detect periods of linguistic change and the lexical and grammatical features contributing to change. We focus on the development of scientific English in the late modern period. Our approach is based on relative entropy (Kullback-Leibler Divergence) comparing temporally adjacent periods and sliding over the time line from past to present. Using a diachronic corpus of scientific publications of the Royal Society of London, we show how periods of change reflect the interplay between lexis and grammar, where periods of lexical expansion are typically followed by periods of grammatical consolidation resulting in a balance between expressivity and communicative efficiency. Our method is generic and can be applied to other data sets, languages and time ranges.This research is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) under grants SFB1102: Information Density and Linguistic Encoding (www.sfb1102.uni-saarland.de) and EXC 284: Multimodal Computing and Interaction (www.mmci.uni-saarland.de)

    Exploring subdomain variation in biomedical language.

    Get PDF
    BACKGROUND: Applications of Natural Language Processing (NLP) technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. RESULTS: Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. CONCLUSIONS: We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers

    Estimating language relationships from a parallel corpus. A study of the Europarl corpus

    Get PDF
    Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011. Editors: Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa. NEALT Proceedings Series, Vol. 11 (2011), 161-167. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/16955
    corecore