23 research outputs found

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Efficient Automated Planning with New Formulations

    Get PDF
    Problem solving usually strongly relies on how the problem is formulated. This fact also applies to automated planning, a key field in artificial intelligence research. Classical planning used to be dominated by STRIPS formulation, a simple model based on propositional logic. In the recently introduced SAS+ formulation, the multi-valued variables naturally depict certain invariants that are missed in STRIPS, make SAS+ have many favorable features. Because of its rich structural information SAS+ begins to attract lots of research interest. Existing works, however, are mostly limited to one single thing: to improve heuristic functions. This is in sharp contrast with the abundance of planning models and techniques in the field. On the other hand, although heuristic is a key part for search, its effectiveness is limited. Recent investigations have shown that even if we have almost perfect heuristics, the number of states to visit is still exponential. Therefore, there is a barrier between the nice features of SAS+ and its applications in planning algorithms. In this dissertation, we have recasted two major planning paradigms: state space search and planning as Satisfiability: SAT), with three major contributions. First, we have utilized SAS+ for a new hierarchical state space search model by taking advantage of the decomposable structure within SAS+. This algorithm can greatly reduce the time complexity for planning. Second, planning as Satisfiability is a major planning approach, but it is traditionally based on STRIPS. We have developed a new SAS+ based SAT encoding scheme: SASE) for planning. The state space modeled by SASE shows a decomposable structure with certain components independent to others, showing promising structure that STRIPS based encoding does not have. Third, the expressiveness of planning is important for real world scenarios, thus we have also extended the planning as SAT to temporally expressive planning and planning with action costs, two advanced features beyond classical planning. The resulting planner is competitive to state-of-the-art planners, in terms of both quality and performance. Overall, our work strongly suggests a shifting trend of planning from STRIPS to SAS+, and shows the power of formulating planning problems as Satisfiability. Given the important roles of both classical planning and temporal planning, our work will inspire new developments in other advanced planning problem domains

    Efficient local search for Pseudo Boolean Optimization

    Get PDF
    Algorithms and the Foundations of Software technolog

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore