4,264 research outputs found

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Runtime-guided mitigation of manufacturing variability in power-constrained multi-socket NUMA nodes

    Get PDF
    This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). This work was also partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-689878). Finally, the authors are grateful to the reviewers for their valuable comments, to the RoMoL team, to Xavier Teruel and Kallia Chronaki from the Programming Models group of BSC and the Computation Department of LLNL for their technical support and useful feedback.Peer ReviewedPostprint (published version

    Measuring concurrency in CCS

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of ScienceThis research report investigates the application of Charron-Bost's measure of currency m to Milner's Calculus of Communicating Systems (CCS). The aim of this is twofold: first to evaluate the measure m in terms of criteria gathered from the literature: and second to determine the feasiblllty of measuring concurrency in CCS and hence provide a new tool for understanding concurrency using CCS. The approach taken is to identify the differences hetween the message-passing formalism in which the measure m is defined, and CCS and to modify this formalism to-enable the mapping of CCS agents to it. A software tool, the Concurrency Measurement Tool, is developed to permit experimentation with chosen CCS agents. These experiments show that the measure m, although intuitively appealing, is defined by an algebraic expression that is ill-behaved. A new measure is defined and it is shown that it matches the evaluation criteria better than m, although it is still not ideal. This work demonstrates that it is feasible to measure concurrency in CCS and that a methodology has been developed for evaluating concurrency measures.Andrew Chakane 201

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    A simple approach to distributed objects in prolog

    Full text link
    We present the design of a distributed object system for Prolog, based on adding remote execution and distribution capabilities to a previously existing object system. Remote execution brings RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins. The final distributed object design features state mobility and user-transparent network behavior. We sketch an implementation which provides distributed garbage collection and some degree of tolerance to network failures. We provide a preliminary study of the overhead of the communication mechanism for some test cases

    Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications

    Full text link
    Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two distinct exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10^4) tasks; and (iv) fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing

    Locality-aware parallel block-sparse matrix-matrix multiplication using the Chunks and Tasks programming model

    Full text link
    We present a method for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. By using a quadtree matrix representation, data locality is exploited without prior information about the matrix sparsity pattern. A distributed quadtree matrix representation is straightforward to implement due to our recent development of the Chunks and Tasks programming model [Parallel Comput. 40, 328 (2014)]. The quadtree representation combined with the Chunks and Tasks model leads to favorable weak and strong scaling of the communication cost with the number of processes, as shown both theoretically and in numerical experiments. Matrices are represented by sparse quadtrees of chunk objects. The leaves in the hierarchy are block-sparse submatrices. Sparsity is dynamically detected by the matrix library and may occur at any level in the hierarchy and/or within the submatrix leaves. In case graphics processing units (GPUs) are available, both CPUs and GPUs are used for leaf-level multiplication work, thus making use of the full computing capacity of each node. The performance is evaluated for matrices with different sparsity structures, including examples from electronic structure calculations. Compared to methods that do not exploit data locality, our locality-aware approach reduces communication significantly, achieving essentially constant communication per node in weak scaling tests.Comment: 35 pages, 14 figure
    • …
    corecore