75,916 research outputs found

    On directed information theory and Granger causality graphs

    Full text link
    Directed information theory deals with communication channels with feedback. When applied to networks, a natural extension based on causal conditioning is needed. We show here that measures built from directed information theory in networks can be used to assess Granger causality graphs of stochastic processes. We show that directed information theory includes measures such as the transfer entropy, and that it is the adequate information theoretic framework needed for neuroscience applications, such as connectivity inference problems.Comment: accepted for publications, Journal of Computational Neuroscienc

    Causal conditioning and instantaneous coupling in causality graphs

    Full text link
    The paper investigates the link between Granger causality graphs recently formalized by Eichler and directed information theory developed by Massey and Kramer. We particularly insist on the implication of two notions of causality that may occur in physical systems. It is well accepted that dynamical causality is assessed by the conditional transfer entropy, a measure appearing naturally as a part of directed information. Surprisingly the notion of instantaneous causality is often overlooked, even if it was clearly understood in early works. In the bivariate case, instantaneous coupling is measured adequately by the instantaneous information exchange, a measure that supplements the transfer entropy in the decomposition of directed information. In this paper, the focus is put on the multivariate case and conditional graph modeling issues. In this framework, we show that the decomposition of directed information into the sum of transfer entropy and information exchange does not hold anymore. Nevertheless, the discussion allows to put forward the two measures as pillars for the inference of causality graphs. We illustrate this on two synthetic examples which allow us to discuss not only the theoretical concepts, but also the practical estimation issues.Comment: submitte

    Quantifying causal influences

    Full text link
    Many methods for causal inference generate directed acyclic graphs (DAGs) that formalize causal relations between nn variables. Given the joint distribution on all these variables, the DAG contains all information about how intervening on one variable changes the distribution of the other n−1n-1 variables. However, quantifying the causal influence of one variable on another one remains a nontrivial question. Here we propose a set of natural, intuitive postulates that a measure of causal strength should satisfy. We then introduce a communication scenario, where edges in a DAG play the role of channels that can be locally corrupted by interventions. Causal strength is then the relative entropy distance between the old and the new distribution. Many other measures of causal strength have been proposed, including average causal effect, transfer entropy, directed information, and information flow. We explain how they fail to satisfy the postulates on simple DAGs of ≤3\leq3 nodes. Finally, we investigate the behavior of our measure on time-series, supporting our claims with experiments on simulated data.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1145 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantifying 'causality' in complex systems: Understanding Transfer Entropy

    Full text link
    'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of `causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets

    Measuring Shared Information and Coordinated Activity in Neuronal Networks

    Get PDF
    Most nervous systems encode information about stimuli in the responding activity of large neuronal networks. This activity often manifests itself as dynamically coordinated sequences of action potentials. Since multiple electrode recordings are now a standard tool in neuroscience research, it is important to have a measure of such network-wide behavioral coordination and information sharing, applicable to multiple neural spike train data. We propose a new statistic, informational coherence, which measures how much better one unit can be predicted by knowing the dynamical state of another. We argue informational coherence is a measure of association and shared information which is superior to traditional pairwise measures of synchronization and correlation. To find the dynamical states, we use a recently-introduced algorithm which reconstructs effective state spaces from stochastic time series. We then extend the pairwise measure to a multivariate analysis of the network by estimating the network multi-information. We illustrate our method by testing it on a detailed model of the transition from gamma to beta rhythms.Comment: 8 pages, 6 figure

    Causal inference using the algorithmic Markov condition

    Full text link
    Inferring the causal structure that links n observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when only single observations are present. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also discuss how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.Comment: 16 figure

    Causal Dependence Tree Approximations of Joint Distributions for Multiple Random Processes

    Full text link
    We investigate approximating joint distributions of random processes with causal dependence tree distributions. Such distributions are particularly useful in providing parsimonious representation when there exists causal dynamics among processes. By extending the results by Chow and Liu on dependence tree approximations, we show that the best causal dependence tree approximation is the one which maximizes the sum of directed informations on its edges, where best is defined in terms of minimizing the KL-divergence between the original and the approximate distribution. Moreover, we describe a low-complexity algorithm to efficiently pick this approximate distribution.Comment: 9 pages, 15 figure
    • …
    corecore