727 research outputs found

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003

    Quantifying unsharpness of observables in an outcome-independent way

    Full text link
    Recently, a very beautiful measure of the unsharpness (fuzziness) of the observables is discussed in the paper [Phys. Rev. A 104, 052227 (2021)]. The measure which is defined in this paper is constructed via uncertainty and does not depend on the values of the outcomes. There exist several properties of a set of observables (e.g., incompatibility, non-disturbance) that do not depend on the values of the outcomes. Therefore, the approach in the above-said paper is consistent with the above-mentioned fact and is able to measure the intrinsic unsharpness of the observables. In this work, we also quantify the unsharpness of observables in an outcome-independent way. But our approach is different than the approach of the above-said paper. In this work, at first, we construct two Luder's instrument-based unsharpness measures and provide the tight upper bounds of those measures. Then we prove the monotonicity of the above-said measures under a class of fuzzifying processes (processes that make the observables more fuzzy). This is consistent with the resource-theoretic framework. Then we relate our approach to the approach of the above-said paper. Next, we try to construct two instrument-independent unsharpness measures. In particular, we define two instrument-independent unsharpness measures and provide the tight upper bounds of those measures and then we derive the condition for the monotonicity of those measures under a class of fuzzifying processes and prove the monotonicity for dichotomic qubit observables. Then we show that for an unknown measurement, the values of all of these measures can be determined experimentally. Finally, we present the idea of the resource theory of the sharpness of the observables.Comment: 14 pages, 3 figure

    Quantum Mechanics as a Framework for Dealing with Uncertainty

    Full text link
    Quantum uncertainty is described here in two guises: indeterminacy with its concomitant indeterminism of measurement outcomes, and fuzziness, or unsharpness. Both features were long seen as obstructions of experimental possibilities that were available in the realm of classical physics. The birth of quantum information science was due to the realization that such obstructions can be turned into powerful resources. Here we review how the utilization of quantum fuzziness makes room for a notion of approximate joint measurement of noncommuting observables. We also show how from a classical perspective quantum uncertainty is due to a limitation of measurability reflected in a fuzzy event structure -- all quantum events are fundamentally unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku 2009

    Imprint of quantum gravity in the dimension and fabric of spacetime

    Full text link
    We here conjecture that two much-studied aspects of quantum gravity, dimensional flow and spacetime fuzziness, might be deeply connected. We illustrate the mechanism, providing first evidence in support of our conjecture, by working within the framework of multifractional theories, whose key assumption is an anomalous scaling of the spacetime dimension in the ultraviolet and a slow change of the dimension in the infrared. This sole ingredient is enough to produce a scale-dependent deformation of the integration measure with also a fuzzy spacetime structure. We also compare the multifractional correction to lengths with the types of Planckian uncertainty for distance and time measurements that was reported in studies combining quantum mechanics and general relativity heuristically. This allows us to fix two free parameters of the theory and leads, in one of the scenarios we contemplate, to a value of the ultraviolet dimension which had already found support in other quantum-gravity analyses. We also formalize a picture such that fuzziness originates from a fundamental discrete scale invariance at short scales and corresponds to a stochastic spacetime geometry.Comment: 6 pages; v2: phenomenology section adde

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    Dimensional flow and fuzziness in quantum gravity: emergence of stochastic spacetime

    Full text link
    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.Comment: 25 pages. v2: minor typos corrected, references adde

    This elusive objective existence

    Full text link
    Zurek's existential interpretation of quantum mechanics suffers from three classical prejudices, including the belief that space and time are intrinsically and infinitely differentiated. They compel him to relativize the concept of objective existence in two ways. The elimination of these prejudices makes it possible to recognize the quantum formalism's ontological implications - the relative and contingent reality of spatiotemporal distinctions and the extrinsic and finite spatiotemporal differentiation of the physical world - which in turn makes it possible to arrive at an unqualified objective existence. Contrary to a widespread misconception, viewing the quantum formalism as being fundamentally a probability algorithm does not imply that quantum mechanics is concerned with states of knowledge rather than states of Nature. On the contrary, it makes possible a complete and strongly objective description of the physical world that requires no reference to observers. What objectively exists, in a sense that requires no qualification, is the trajectories of macroscopic objects, whose fuzziness is empirically irrelevant, the properties and values of whose possession these trajectories provide indelible records, and the fuzzy and temporally undifferentiated states of affairs that obtain between measurements and are described by counterfactual probability assignments.Comment: To appear in IJQI; 21 pages, LaTe
    • 

    corecore