4,149 research outputs found

    Measuring Possible Future Selves: Using Natural Language Processing for Automated Analysis of Posts about Life Concerns

    Get PDF
    Individuals have specific perceptions regarding their lives pertaining to how well they are doing in particular life domains, what their ideas are, and what to pursue in the future. These concepts are called possible future selves (PFS), a schema that contains the ideas of people, who they currently are, and who they wish to be in the future. The goal of this research project is to create a program to capture PFS using natural language processing. This program will allow automated analysis to measure people's perceptions and goals in a particular life domain and assess their view of the importance regarding their thoughts on each part of their PFS. The data used in this study were adopted from Kennard, Willis, Robinson, and Knobloch-Westerwick (2015) in which 214 women, aged between 21-35 years, viewed magazine portrayals of women in gender-congruent and gender-incongruent roles. The participants were prompted to write about their PFS with the questions: "Over the past 7 days, how much have you thought about your current life situation and your future? What were your thoughts? How much have you thought about your goals in life and your relationships? What were your thoughts?" The text PFS responses were then coded for mentions of different life domains and the emotions explicitly expressed from the text-data by human coders. Combinations of machine learning techniques were utilized to show the robustness of machine learning in predicting PFS. Long Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and decision trees were used in the ensemble learning of the machine learning model. Two different training and evaluation methods were used to find the most optimal machine learning approach in analyzing PFS. The machine learning approach was found successful in predicting PFS with high accuracy, labeling a person's concerns over PFS the same as human coders have done in The Allure of Aphrodite. While the models were inaccurate in spotting some measures, for example labeling a person's career concern in the present with around 60% accuracy, it was accurate finding a concern in a person's past romantic life with above 95% accuracy. Overall, the accuracy was found to be around 83% for life-domain concerns.Undergraduate Research Scholarship by the College of EngineeringNo embargoAcademic Major: Computer Science and Engineerin

    Enhancing Operation of a Sewage Pumping Station for Inter Catchment Wastewater Transfer by Using Deep Learning and Hydraulic Model

    Get PDF
    This paper presents a novel Inter Catchment Wastewater Transfer (ICWT) method for mitigating sewer overflow. The ICWT aims at balancing the spatial mismatch of sewer flow and treatment capacity of Wastewater Treatment Plant (WWTP), through collaborative operation of sewer system facilities. Using a hydraulic model, the effectiveness of ICWT is investigated in a sewer system in Drammen, Norway. Concerning the whole system performance, we found that the S{\o}ren Lemmich pump station plays a vital role in the ICWT framework. To enhance the operation of this pump station, it is imperative to construct a multi-step ahead water level prediction model. Hence, one of the most promising artificial intelligence techniques, Long Short Term Memory (LSTM), is employed to undertake this task. Experiments demonstrated that LSTM is superior to Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Feed-forward Neural Network (FFNN) and Support Vector Regression (SVR)

    Detecting and Monitoring Hate Speech in Twitter

    Get PDF
    Social Media are sensors in the real world that can be used to measure the pulse of societies. However, the massive and unfiltered feed of messages posted in social media is a phenomenon that nowadays raises social alarms, especially when these messages contain hate speech targeted to a specific individual or group. In this context, governments and non-governmental organizations (NGOs) are concerned about the possible negative impact that these messages can have on individuals or on the society. In this paper, we present HaterNet, an intelligent system currently being used by the Spanish National Office Against Hate Crimes of the Spanish State Secretariat for Security that identifies and monitors the evolution of hate speech in Twitter. The contributions of this research are many-fold: (1) It introduces the first intelligent system that monitors and visualizes, using social network analysis techniques, hate speech in Social Media. (2) It introduces a novel public dataset on hate speech in Spanish consisting of 6000 expert-labeled tweets. (3) It compares several classification approaches based on different document representation strategies and text classification models. (4) The best approach consists of a combination of a LTSM+MLP neural network that takes as input the tweet’s word, emoji, and expression tokens’ embeddings enriched by the tf-idf, and obtains an area under the curve (AUC) of 0.828 on our dataset, outperforming previous methods presented in the literatureThe work by Quijano-Sanchez was supported by the Spanish Ministry of Science and Innovation grant FJCI-2016-28855. The research of Liberatore was supported by the Government of Spain, grant MTM2015-65803-R, and by the European Union’s Horizon 2020 Research and Innovation Programme, under the Marie Sklodowska-Curie grant agreement No. 691161 (GEOSAFE). All the financial support is gratefully acknowledge

    Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction

    Get PDF
    This paper reports the results of the NN3 competition, which is a replication of the M3 competition with an extension of the competition towards neural network (NN) and computational intelligence (CI) methods, in order to assess what progress has been made in the 10 years since the M3 competition. Two masked subsets of the M3 monthly industry data, containing 111 and 11 empirical time series respectively, were chosen, controlling for multiple data conditions of time series length (short/long), data patterns (seasonal/non-seasonal) and forecasting horizons (short/medium/long). The relative forecasting accuracy was assessed using the metrics from the M3, together with later extensions of scaled measures, and non-parametric statistical tests. The NN3 competition attracted 59 submissions from NN, CI and statistics, making it the largest CI competition on time series data. Its main findings include: (a) only one NN outperformed the damped trend using the sMAPE, but more contenders outperformed the AutomatANN of the M3; (b) ensembles of CI approaches performed very well, better than combinations of statistical methods; (c) a novel, complex statistical method outperformed all statistical and Cl benchmarks; and (d) for the most difficult subset of short and seasonal series, a methodology employing echo state neural networks outperformed all others. The NN3 results highlight the ability of NN to handle complex data, including short and seasonal time series, beyond prior expectations, and thus identify multiple avenues for future research. (C) 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved

    Applications of artificial neural networks predicting macroinvertebrates in freshwaters

    Get PDF
    • …
    corecore