464 research outputs found

    Visual discomfort whilst viewing 3D stereoscopic stimuli

    Get PDF
    3D stereoscopic technology intensifies and heightens the viewer s experience by adding an extra dimension to the viewing of visual content. However, with expansion of this technology to the commercial market concerns have been expressed about the potential negative effects on the visual system, producing viewer discomfort. The visual stimulus provided by a 3D stereoscopic display differs from that of the real world, and so it is important to understand whether these differences may pose a health hazard. The aim of this thesis is to investigate the effect of 3D stereoscopic stimulation on visual discomfort. To that end, four experimental studies were conducted. In the first study two hypotheses were tested. The first hypothesis was that the viewing of 3D stereoscopic stimuli, which are located geometrically beyond the screen on which the images are displayed, would induce adaptation changes in the resting position of the eyes (exophoric heterophoria changes). The second hypothesis was that participants whose heterophoria changed as a consequence of adaptation during the viewing of the stereoscopic stimuli would experience less visual discomfort than those people whose heterophoria did not adapt. In the experiment an increase of visual discomfort change in the 3D condition in comparison with the 2D condition was found. Also, there were statistically significant changes in heterophoria under 3D conditions as compared with 2D conditions. However, there was appreciable variability in the magnitude of this adaptation among individuals, and no correlation between the amount of heterophoria change and visual discomfort change was observed. In the second experiment the two hypotheses tested were based on the vergence-accommodation mismatch theory, and the visual-vestibular mismatch theory. The vergence-accommodation mismatch theory predicts that a greater mismatch between the stimuli to accommodation and to vergence would produce greater symptoms in visual discomfort when viewing in 3D conditions than when viewing in 2D conditions. An increase of visual discomfort change in the 3D condition in comparison with the 2D condition was indeed found; however the magnitude of visual discomfort reported did not correlate with the mismatch present during the watching of 3D stereoscopic stimuli. The visual-vestibular mismatch theory predicts that viewing a stimulus stereoscopically will produce a greater sense of vection than viewing it in 2D. This will increase the conflict between the signals from the visual and vestibular systems, producing greater VIMS (Visually- Induced Motion Sickness) symptoms. Participants did indeed report an increase in motion sickness symptoms in the 3D condition. Furthermore, participants with closer seating positions reported more VIMS than participants sitting farther away whilst viewing 3D stimuli. This suggests that the amount of visual field stimulated during 3D presentation affects VIMS, and is an important factor in terms of viewing comfort. In the study more younger viewers (21 to 39 years old) than older viewers (40 years old and older) reported a greater change in visual discomfort during the 3D condition than the 2D condition. This suggests that the visual system s response to a stimulus, rather than the stimulus itself, is a reason for discomfort. No influence of gender on viewing comfort was found. In the next experiment participants fusion capability, as measured by their fusional reserves, was examined to determine whether this component has an impact on reported discomfort during the watching of movies in the 3D condition versus the 2D condition. It was hypothesised that participants with limited fusional range would experience more visual discomfort than participants with a wide fusion range. The hypothesis was confirmed but only in the case of convergent and not divergent eye movement. This observation illustrates that participants capability to convergence has a significant impact on visual comfort. The aim of the last experiment was to examine responses of the accommodation system to changes in 3D stimulus position and to determine whether discrepancies in these responses (i.e. accommodation overshoot, accommodation undershoot) could account for visual discomfort experienced during 3D stereoscopic viewing. It was found that accommodation discrepancy was larger for perceived forwards movement than for perceived backwards movement. The discrepancy was slightly higher in the group susceptible to visual discomfort than in the group not susceptible to visual discomfort, but this difference was not statistically significant. When considering the research findings as a whole it was apparent that not all participants experienced more discomfort whilst watching 3D stereoscopic stimuli than whilst watching 2D stimuli. More visual discomfort in the 3D condition than in the 2D condition was reported by 35% of the participants, whilst 24% of the participants reported more headaches and 17% of the participants reported more VIMS. The research indicates that multiple causative factors have an impact on reported symptoms. The analysis of the data suggests that discomfort experienced by people during 3D stereoscopic stimulation may reveal binocular vision problems. This observation suggests that 3D technology could be used as a screening method to diagnose un-treated binocular vision disorder. Additionally, this work shows that 3D stereoscopic technology can be easily adopted to binocular vision measurement. The conclusion of this thesis is that many people do not suffer adverse symptoms when viewing 3D stereoscopic displays, but that if adverse symptoms are present they can be caused either by the conflict in the stimulus, or by the heightened experience of self-motion which leads to Visually-Induced Motion Sickness (VIMS)

    Dynamic accommodative response to different visual stimuli (2D vs 3D) while watching television and while playing Nintendo 3DS console

    Get PDF
    PURPOSE: The aim of the present study was to compare the accommodative response to the same visual content presented in two dimensions (2D) and stereoscopically in three dimensions (3D) while participants were either watching a television (TV) or Nintendo 3DS console. METHODS: Twenty-two university students, with a mean age of 20.3 ± 2.0 years (mean ± S.D.), were recruited to participate in the TV experiment and fifteen, with a mean age of 20.1 ± 1.5 years took part in the Nintendo 3DS console study. The accommodative response was measured using a Grand Seiko WAM 5500 autorefractor. In the TV experiment, three conditions were used initially: the film was viewed in 2D mode (TV2D without glasses), the same sequence was watched in 2D whilst shutter-glasses were worn (TV2D with glasses) and the sequence was viewed in 3D mode (TV3D). Measurements were taken for 5 min in each condition, and these sections were sub-divided into ten 30-s segments to examine changes within the film. In addition, the accommodative response to three points of different disparity of one 3D frame was assessed for 30 s. In the Nintendo experiment, two conditions were employed - 2D viewing and stereoscopic 3D viewing. RESULTS: In the TV experiment no statistically significant differences were found between the accommodative response with TV2D without glasses (-0.38 ± 0.32D, mean ± S.D.) and TV3D (-0.37 ± 0.34D). Also, no differences were found between the various segments of the film, or between the accommodative response to different points of one frame (p > 0.05). A significant difference (p = 0.015) was found, however, between the TV2D with (-0.32 ± 0.32D) and without glasses (-0.38 ± 0.32D). In the Nintendo experiment the accommodative responses obtained in modes 2D (-2.57 ± 0.30D) and 3D (-2.49 ± 0.28D) were significantly different (paired t-test p = 0.03). CONCLUSIONS: The need to use shutter-glasses may affect the accommodative response during the viewing of displays, and the accommodative response when playing Nintendo 3DS in 3D mode is lower than when it is viewed in 2D.None of the authors has an interest in the products and devices mentioned in the study. This study has been funded by projects PTDC/SAU-BEB/098392/2008 funded by the Portuguese Fundacao para a Ciencia e Tecnologia through the European Social Fund

    Perceived Depth Control in Stereoscopic Cinematography

    Get PDF
    Despite the recent explosion of interest in the stereoscopic 3D (S3D) technology, the ultimate prevailing of the S3D medium is still significantly hindered by adverse effects regarding the S3D viewing discomfort. This thesis attempts to improve the S3D viewing experience by investigating perceived depth control methods in stereoscopic cinematography on desktop 3D displays. The main contributions of this work are: (1) A new method was developed to carry out human factors studies on identifying the practical limits of the 3D Comfort Zone on a given 3D display. Our results suggest that it is necessary for cinematographers to identify the specific limits of 3D Comfort Zone on the target 3D display as different 3D systems have different ranges for the 3D Comfort Zone. (2) A new dynamic depth mapping approach was proposed to improve the depth perception in stereoscopic cinematography. The results of a human-based experiment confirmed its advantages in controlling the perceived depth in viewing 3D motion pictures over the existing depth mapping methods. (3) The practicability of employing the Depth of Field (DoF) blur technique in S3D was also investigated. Our results indicate that applying the DoF blur simulation on stereoscopic content may not improve the S3D viewing experience without the real time information about what the viewer is looking at. Finally, a basic guideline for stereoscopic cinematography was introduced to summarise the new findings of this thesis alongside several well-known key factors in 3D cinematography. It is our assumption that this guideline will be of particular interest not only to 3D filmmaking but also to 3D gaming, sports broadcasting, and TV production

    Spatial calibration of an optical see-through head-mounted display

    Get PDF
    We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the~HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry
    corecore