2,413 research outputs found

    Spectrum occupancy measurements and lessons learned in the context of cognitive radio

    Get PDF
    Various measurement campaigns have shown that numerous spectrum bands are vacant even though licenses have been issued by the regulatory agencies. Dynamic spectrum access (DSA) based on Cognitive Radio (CR) has been regarded as a prospective solution to improve spectrum utilization for wireless communications. Empirical measurement of the radio environment to promote understanding of the current spectrum usage of the different wireless services is the first step towards deployment of future CR networks. In this paper we present our spectrum measurement setup and discuss lessons learned during our measurement activities. The main contribution of the paper is to introduce global spectrum occupancy measurements and address the major drawbacks of previous spectrum occupancy studies by providing a unifying methodological framework for future spectrum measurement campaigns

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    On the feasibility of unlicensed communications in the TV white space: Field measurements in the UHF band

    Get PDF
    In practical unlicensed communications in TV band, radio devices have to identify, at first, the transmission opportunities, that is, the portion of the spectrum licensed for broadcasting services unoccupied in a certain region at certain time, that is, the so-called TV white space. In this paper the outcome of field measurements in the UHF TV band (470-860 MHz) conducted in EU is presented. To obtain empirical values for the parameters upon which unlicensed radio devices are able to distinguish in a real scenario between empty and occupied TV channels, signal power measurements have been performed in Italy, Spain, and Romania on rural, suburban, and urban sites, at different heights over the ground by using different analysis bandwidths. The aim of this work is to provide a set of practical parameters upon which harmless unlicensed communication in the UHF TV white space is feasible. The results have been analyzed with respect to the hidden node margin problem, spectrum sensing bandwidth, and occupancy threshold

    Improved electromagnetic compatibility standards for the interconnected wireless world

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The future is wireless, a world where everything is interconnected. However, the current standards for ensuring the electromagnetic compatibility (EMC) and the coexistence of such wireless systems urge for a major update. It is shown how novel statistical approaches based on the amplitude probability distribution detector and time-domain measurements are better suited for estimating the degradation caused by electromagnetic interferences on digital communication systems than the established practice of determining compliance according to the quasi-peak detector levels using a pass/fail criterion. Therefore, a redefinition of the test methods and of the compliance requirements in terms of EMC standards must be a priority of the international standardization bodies. Finally, a discussion of the fundamental challenges involved in this standardization breakthrough for EMC is delivered.Postprint (author's final draft

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&
    corecore