11,999 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Time- and Frequency-Varying KK-Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios

    Full text link
    Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to fast changes in the environment. We characterize the distribution of the envelope of the first delay bin in vehicle-to-vehicle channels by means of its Rician KK-factor. We analyze the time-frequency variability of this channel parameter using vehicular channel measurements at 5.6 GHz with a bandwidth of 240 MHz for safety-relevant scenarios in intelligent transportation systems (ITS). This data enables a frequency-variability analysis from an IEEE 802.11p system point of view, which uses 10 MHz channels. We show that the small-scale fading of the envelope of the first delay bin is Ricean distributed with a varying KK-factor. The later delay bins are Rayleigh distributed. We demonstrate that the KK-factor cannot be assumed to be constant in time and frequency. The causes of these variations are the frequency-varying antenna radiation patterns as well as the time-varying number of active scatterers, and the effects of vegetation. We also present a simple but accurate bi-modal Gaussian mixture model, that allows to capture the KK-factor variability in time for safety-relevant ITS scenarios.Comment: 26 pages, 12 figures, submitted to IEEE Transactions on Intelligent Transportation Systems for possible publicatio

    Millimeter-wave communication for a last-mile autonomous transport vehicle

    Get PDF
    Low-speed autonomous transport of passengers and goods is expected to have a strong, positive impact on the reliability and ease of travelling. Various advanced functions of the involved vehicles rely on the wireless exchange of information with other vehicles and the roadside infrastructure, thereby benefitting from the low latency and high throughput characteristics that 5G technology has to offer. This work presents an investigation of 5G millimeter-wave communication links for a low-speed autonomous vehicle, focusing on the effects of the antenna positions on both the received signal quality and the link performance. It is observed that the excess loss for communication with roadside infrastructure in front of the vehicle is nearly half-power beam width independent, and the increase of the root mean square delay spread plays a minor role in the resulting signal quality, as the absolute times are considerably shorter than the typical duration of 5G New Radio symbols. Near certain threshold levels, a reduction of the received power affects the link performance through an increased error vector magnitude of the received signal, and subsequent decrease of the achieved data throughput

    Experimental investigation of V2I radio channel in an arched tunnel

    Get PDF
    This paper describes the results of the experimental radio channel sounding campaign performed in an arched road tunnel in Le Havre, France. The co-polar and cross-polar channels measurements are carried out in the closed side lane, while the lane along the center of the tunnel is open to traffic. We investigate the channel characteristics in terms of: path loss, fading distribution, polarization power ratios and delay spread. All these parameters are essential for the deployment of vehicular communication systems inside tunnels. Our results indicate that, while the H-polar channel gain attenuates slower than the V-polar channel due to the geometry of the tunnel, the mean delay spread of the H-polar channel is larger than that of the V-polar channel

    Heterogeneous V2V Communications in Multi-Link and Multi-RAT Vehicular Networks

    Get PDF
    Connected and automated vehicles will enable advanced traffic safety and efficiency applications thanks to the dynamic exchange of information between vehicles, and between vehicles and infrastructure nodes. Connected vehicles can utilize IEEE 802.11p for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. However, a widespread deployment of connected vehicles and the introduction of connected automated driving applications will notably increase the bandwidth and scalability requirements of vehicular networks. This paper proposes to address these challenges through the adoption of heterogeneous V2V communications in multi-link and multi-RAT vehicular networks. In particular, the paper proposes the first distributed (and decentralized) context-aware heterogeneous V2V communications algorithm that is technology and application agnostic, and that allows each vehicle to autonomously and dynamically select its communications technology taking into account its application requirements and the communication context conditions. This study demonstrates the potential of heterogeneous V2V communications, and the capability of the proposed algorithm to satisfy the vehicles' application requirements while approaching the estimated upper bound network capacity
    corecore