3,836 research outputs found

    Towards a versatile transport protocol

    Get PDF
    n the context of a reconfigurable transport protocol, this paper introduces two protocol instances based on the com- position and specialisation of the TFRC congestion control and Selective Acknowledgment mechanisms. The two result- ing transport architectures lead respectively to the QTP_AF protocol, specifically designed to operate over QoS-enabled networks and the QTP_light protocol, specifically designed for resource-limited end systems connected to powerful servers. QTP_AF combines QoS-aware TFRC congestion control with full reliability to provide a transport service similar to TCP but additionally taking into account network-level band-width reservations. QTP_light proposes a modification of TFRC that shifts from the receiver to the sender the complexity of the loss rate estimation mechanism. This modification allows to alleviate the processing and communication load of "light" resource limited mobile receivers. We present the concept of these protocols and their adaptation in the EuQoS European project framework

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Dynamic bandwidth allocation in multi-class IP networks using utility functions.

    Get PDF
    PhDAbstact not availableFujitsu Telecommunications Europe Lt

    SDN-BASED MECHANISMS FOR PROVISIONING QUALITY OF SERVICE TO SELECTED NETWORK FLOWS

    Get PDF
    Despite the huge success and adoption of computer networks in the recent decades, traditional network architecture falls short of some requirements by many applications. One particular shortcoming is the lack of convenient methods for providing quality of service (QoS) guarantee to various network applications. In this dissertation, we explore new Software-Defined Networking (SDN) mechanisms to provision QoS to targeted network flows. Our study contributes to providing QoS support to applications in three aspects. First, we explore using alternative routing paths for selected flows that have QoS requirements. Instead of using the default shortest path used by the current network routing protocols, we investigate using the SDN controller to install forwarding rules in switches that can achieve higher bandwidth. Second, we develop new mechanisms for guaranteeing the latency requirement by those applications depending on timely delivery of sensor data and control signals. The new mechanism pre-allocates higher priority queues in routers/switches and reserves these queues for control/sensor traffic. Third, we explore how to make the applications take advantage of the opportunity provided by SDN. In particular, we study new transmission mechanisms for big data transfer in the cloud computing environment. Instead of using a single TCP path to transfer data, we investigate how to let the application set up multiple TCP paths for the same application to achieve higher throughput. We evaluate these new mechanisms with experiments and compare them with existing approaches

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Tracing Internet Path Transparency

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 688421, and was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0268. The opinions expressed and arguments employed reflect only the authors’ views. The European Commission is not responsible for any use that may be made of that information. Further, the opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government.Peer reviewedPublisher PD
    • 

    corecore