232 research outputs found

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Optimal channel assignment and power control in wireless cellular networks

    Get PDF
    Wireless mobile communication is a fast growing field in current telecommunication industry. In a wireless cellular network, channel assignment is a mechanism that assigns channels to mobile users in order to establish a communication between a mobile terminal and a base station. It is important to determine an optimal allocation of channels that makes effective use of channels and minimizes call-blocking and call-dropping probabilities. Another important issue, the power control, is a problem of determining an optimal allocation of power levels to transmitters such that the power consumption is minimized while signal quality is maintained. In wireless mobile networks, channels and transmitter powers are limited resources. Therefore, efficient utilization of both those resources can significantly increase the capacity of network. In this thesis, we solve such optimizations by the hybrid channel assignment (HCA) method using integer linear programming (ILP). Two novel sets of ILP formulation are proposed for two different cases: Reuse Distance based HCA without power control, and Carrier-to-Interference Ratio based HCA combined with power control. For each of them, our experimental results show an improvement over other several approaches

    Resource Allocation for Broadband Wireless Access Networks with Imperfect CSI

    Get PDF
    The high deployment and maintenance costs of last mile wireline networks (i.e., DSL and cable networks) have urged service providers to search for new cost-effective solutions to provide broadband connectivity. Broadband wireless access (BWA) networks, which offer a wide coverage area and high transmission rates in addition to their fast and low-cost deployment, have emerged as an alternative to last mile wireline networks. Therefore, BWA networks are expected to be deployed in areas with different terrain profiles (e.g., urban, suburban, rural) where wireless communication faces different channel impairments. This fact necessitates the adoption of various transmission technologies that combat the channel impairments of each profile. Implementation scenarios of BWA networks considered in this thesis are multicarrier-based direct transmission and single carrier-based cooperative transmission scenarios. The performance of these transmission technologies highly depends on how resources are allocated. In this thesis, we focus on the development of practical resource allocation schemes for the mentioned BWA networks implementation scenarios. In order to develop practical schemes, the imperfection of channel state information (CSI) and computational power limitations are among considered practical implementation issues. The design of efficient resource allocation schemes at the MAC layer heavily relies on the CSI reported from the PHY layer as a measure of the wireless channel condition. The channel estimation error and feedback delay renders the reported CSI erroneous. The inaccuracy in CSI propagates to higher layers, resulting in performance degradation. Although this effect is intuitive, a quantitative measure of this degradation is necessary for the design of practical resource allocation schemes. An approach to the evaluation of the ergodic mutual information that reflects this degradation is developed for single carrier, multicarrier, direct, and cooperative scenarios with inaccurate CSI. Given the CSI estimates and estimation error statistics, the presented evaluation of ergodic mutual information can be used in resource allocation and in assessing the severity of estimation error on performance degradation. A point-to-multipoint (PMP) network that employs orthogonal frequency division multiple access (OFDMA) is considered as one of the most common implementation scenarios of BWA networks. Replacing wireline networks requires not only providing the last mile connectivity to subscribers but also supporting their diverse services with stringent quality of service (QoS) requirements. Therefore, the resource allocation problem (i.e., subcarriers, rate and power allocation) is modeled as a network utility maximization (NUM) one that captures the characteristics of this implementation scenario. A dual decomposition-based resource allocation scheme that takes into consideration the diversity of service requirements and inaccuracy of the CSI estimation is developed. Numerical evaluations and simulations are conducted to validate our theoretical claims that the scheme maximizes resource utilization, coordinates with the call admission controller to guarantee QoS, and accounts for CSI inaccuracy. Cooperation has recently received great attention from the research community and industry because of its low cost and fast deployment in addition to the performance improvement it brings to BWA networks. In cooperative scenarios, subscribers cooperate to relay each other's signals. For this implementation scenario of BWA networks, a robust and constrained Kalman filter-based power allocation scheme is proposed to minimize power consumption and guarantee bit error probability (BEP) requirements. The proposed scheme is robust to CSI inaccuracy, responsive to changes in BEP requirements, and optimal in allocating resources. In summary, research results presented in this thesis contribute to the development of practical resource allocation schemes for BWA networks

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Hierarchical Downlink Resource Management Framework for OFDMA based WiMAX Systems

    Get PDF

    Radio resource management for OFDMA systems under practical considerations.

    Get PDF
    Orthogonal frequency division multiple access (OFDMA) is used on the downlink of broadband wireless access (BWA) networks such as Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution (LTE) as it is able to offer substantial advantages such as combating channel impairments and supporting higher data rates. Also, by dynamically allocating subcarriers to users, frequency domain diversity as well as multiuser diversity can be effectively exploited so that performance can be greatly improved. The main focus of this thesis is on the development of practical resource allocation schemes for the OFDMA downlink. Imperfect Channel State Information (CSI), the limited capacity of the dedicated link used for CSI feedback, and the presence of a Connection Admission Control (CAC) unit are issues that are considered in this thesis to develop practical schemes. The design of efficient resource allocation schemes heavily depends on the CSI reported from the users to the transmitter. When the CSI is imperfect, a performance degradation is realized. It is therefore necessary to account for the imperfectness of the CSI when assigning radio resources to users. The first part of this thesis considers resource allocation strategies for OFDMA systems, where the transmitter only knows the statistical knowledge of the CSI (SCSI). The approach used shows that resources can be optimally allocated to achieve a performance that is comparable to that achieved when instantaneous CSI (ICSI) is available. The results presented show that the performance difference between the SCSI and ICSI based resource allocation schemes depends on the number of active users present in the cell, the Quality of Service (QoS) constraint, and the signal-to- noise ratio (SNR) per subcarrier. In practical systems only SCSI or CSI that is correlated to a certain extent with the true channel state can be used to perform resource allocation. An approach to quantifying the performance degradation for both cases is presented for the case where only a discrete number of modulation and coding levels are available for adaptive modulation and coding (AMC). Using the CSI estimates and the channel statistics, the approach can be used to perform resource allocation for both cases. It is shown that when a CAC unit is considered, CSI that is correlated with its present state leads to significantly higher values of the system throughput even under high user mobility. Motivated by the comparison between the correlated and statistical based resource allocation schemes, a strategy is then proposed which leads to a good tradeoff between overhead consumption and fairness as well as throughput when the presence of a CAC unit is considered. In OFDMA networks, the design of efficient CAC schemes also relies on the user CSI. The presence of a CAC unit needs to be considered when designing practical resource allocation schemes for BWA networks that support multiple service classes as it can guarantee fairness amongst them. In this thesis, a novel mechanism for CAC is developed which is based on the user channel gains and the cost of each service. This scheme divides the available bandwidth in accordance with a complete partitioning structure which allocates each service class an amount of non-overlapping bandwidth resource. In summary, the research results presented in this thesis contribute to the development of practical radio resource management schemes for BWA networks

    A new QoS Routing Architecture in NGI

    Get PDF
    After a thorough understanding of the relevant research knowledge and the key theory of NGN, I describe the research objectives and the recent development of the QoS routing in this thesis. QoS routing is regarded as the key part in the problem of the next generation of integrated-service network. A new routing algorithm is put forward in this thesis, which is better than OSPF in some aspects. As for the experiment, NS2 is chosen as the simulation environment, and some other experimental results are also included to manifest its strongpoint. The development and requirement of NGN is described in Chapter One; The definition and types of routing and the basic theories of QoS routing are described in Chapter Two; The development and research method of QoS are focused in Chapter Three. The new routing algorithm and simulation is proposed in Chapter Four
    corecore