5,075 research outputs found

    In-vehicle vibration study of child safety seats

    Get PDF
    This paper reports experimental measurements of the in-vehicle vibrational behaviour of stage 0&1 child safety seats. Road tests were performed for eight combinations of child, child seat and automobile. Four accelerometers were installed in the vehicles and orientated to measure as closely as possible in the vertical direction; two were attached to the floor and two located at the human interfaces. An SAE pad was placed under the ischial tuberosities of the driver at the seat cushion and a child pad, designed for the purpose of this study, was placed under the child. 4 test runs were made over a pave’ (cobblestone) surface for the driver’s seat and 4 for the child seat at both 20 km/h and 40 km/h. Power spectral densities were determined for all measurement points and acceleration transmissibility functions (ATFs) were estimated from the floor of the vehicle to the human interfaces. The system composed of automobile seat, child seat and child was found to transmit greater vibration than the system composed of automobile seat and driver. The ensemble mean transmissibility in the frequency range from 1 to 60 Hz was found to be 77% for the child seat systems as opposed to 61% for the driver’s seats. The acceleration transmissibility for the child seat system was found to be higher than that of the driver’s seat at most frequencies above 10 Hz for all eight systems tested. The measured ATFs suggest that the principal whole-body vibration resonance of the children occurred at a mean frequency of 8.5, rather than the 3.5 to 5.0 Hz typically found in the case of seated adults. It can be concluded that current belt-fastened child seats are less effective than the vehicle primary seating systems in attenuating vibrational disturbances. The results also suggest the potential inability of evaluating child comfort by means of existing whole-body vibration standards

    The spread of epidemic disease on networks

    Full text link
    The study of social networks, and in particular the spread of disease on networks, has attracted considerable recent attention in the physics community. In this paper, we show that a large class of standard epidemiological models, the so-called susceptible/infective/removed (SIR) models can be solved exactly on a wide variety of networks. In addition to the standard but unrealistic case of fixed infectiveness time and fixed and uncorrelated probability of transmission between all pairs of individuals, we solve cases in which times and probabilities are non-uniform and correlated. We also consider one simple case of an epidemic in a structured population, that of a sexually transmitted disease in a population divided into men and women. We confirm the correctness of our exact solutions with numerical simulations of SIR epidemics on networks.Comment: 12 pages, 3 figure

    Predictions of the emergence of vaccine-resistant hepatitis B in The Gambia using a mathematical model

    Get PDF
    Vaccine escape variants of hepatitis B virus (HBV) have been identified world-wide. A mathematical model of HBV transmission is used to investigate the potential pattern of emergence of such variants. Attention is focused on The Gambia as a country with high quality epidemiological data, universal infant immunization and in which escape mutants after childhood infections have been observed. We predict that a variant cannot become dominant for at least 20 years from the start of vaccination, even when using a vaccine which affords no cross protection. The dominant factor responsible for this long time scale is the low rate of infectious contacts between infected and susceptible individuals (we estimate the basic reproduction number of hepatitis B in The Gambia to be 1·7). A variant strain that achieves high prevalence will also take many years to control, and it is questionable whether emergence will be identifiable by sero-surveillance until of high prevalence. The sensitivity of the model predictions to epidemiological and demographic factors is explored

    Predictions of the emergence of vaccine-resistant hepatitis B in The Gambia using a mathematical model

    Get PDF
    Vaccine escape variants of hepatitis B virus (HBV) have been identified world-wide. A mathematical model of HBV transmission is used to investigate the potential pattern of emergence of such variants. Attention is focused on The Gambia as a country with high quality epidemiological data, universal infant immunization and in which escape mutants after childhood infections have been observed. We predict that a variant cannot become dominant for at least 20 years from the start of vaccination, even when using a vaccine which affords no cross protection. The dominant factor responsible for this long time scale is the low rate of infectious contacts between infected and susceptible individuals (we estimate the basic reproduction number of hepatitis B in The Gambia to be 1·7). A variant strain that achieves high prevalence will also take many years to control, and it is questionable whether emergence will be identifiable by sero-surveillance until of high prevalence. The sensitivity of the model predictions to epidemiological and demographic factors is explored

    Evolution of the digital society reveals balance between viral and mass media influence

    Full text link
    Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain their rapid growth emphasize the importance to unravel the laws governing their evolution. We present a quantitative two-parameter model which reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real pre-existing underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is four to five times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the "strength of weak ties" paradigm

    Systematic evaluation of the population-level effects of alternative treatment strategies on the basic reproduction number

    Full text link
    An approach to estimate the influence of the treatment-type controls on the basic reproduction number, R 0 , is proposed and elaborated. The presented approach allows one to estimate the effect of a given treatment strategy or to compare a number of different treatment strategies on the basic reproduction number. All our results are valid for sufficiently small values of the control. However, in many cases it is possible to extend this analysis to larger values of the control as was illustrated by examples

    Complex Agent Networks explaining the HIV epidemic among homosexual men in Amsterdam

    Full text link
    Simulating the evolution of the Human Immunodeficiency Virus (HIV) epidemic requires a detailed description of the population network, especially for small populations in which individuals can be represented in detail and accuracy. In this paper, we introduce the concept of a Complex Agent Network(CAN) to model the HIV epidemics by combining agent-based modelling and complex networks, in which agents represent individuals that have sexual interactions. The applicability of CANs is demonstrated by constructing and executing a detailed HIV epidemic model for men who have sex with men (MSM) in Amsterdam, including a distinction between steady and casual relationships. We focus on MSM contacts because they play an important role in HIV epidemics and have been tracked in Amsterdam for a long time. Our experiments show good correspondence between the historical data of the Amsterdam cohort and the simulation results.Comment: 21 pages, 4 figures, Mathematics and Computers in Simulation, added reference
    • …
    corecore