299 research outputs found

    Effects of hemodialysis therapy on sit-to-walk characteristics in end stage renal disease patients

    Get PDF
    Patients with end stage renal diseases (ESRD) undergoing hemodialysis (HD) have high morbidity and mortality due to multiple causes; one of which is dramatically higher fall rates than the general population. In spite of the multiple efforts aiming to decrease the high mortality and improve quality of life in ESRD patients, limited success has been achieved. If adequate interventions for fall prevention are to be achieved, the functional and mobility mechanisms consistent with falls in this population must be understood. Human movements such as sit-to-walk (STW) tasks are clinically significant, and analysis of these movements provides a meaningful evaluation of postural and locomotor performance in elderly patients with functional limitations indicative of fall risks. In order to assess the effects of HD therapy on fall risks, 22 sessions of both pre- and post-HD measurements were obtained in six ESRD patients utilizing customized inertial measurement units (IMU). IMU signals were denoised using ensemble empirical mode decomposition and Savistky-Golay filtering methods to detect relevant events for identification of STW phases. The results indicated that patients were slower to get out of the chair (as measured by trunk flexion angular accelerations, time to peak trunk flexion, and overall STW completion time) following the dialysis therapy session. STW is a frequent movement in activities of daily living, and HD therapy may influence the postural and locomotor control of these movements. The analysis of STW movement may assist in not only assessing a patient's physical status, but in identifying HD-related fall risk as well. This preliminary study presents a non-invasive method of kinematic measurement for early detection of increased fall risk in ESRD patients using portable inertial sensors for out-patient monitoring. This can be helpful in understanding the pathogenesis better, and improve awareness in health care providers in targeting interventions to identify individuals at risk for fall

    Exploring the Application of Wearable Movement Sensors in People with Knee Osteoarthritis

    Get PDF
    People with knee osteoarthritis have difficulty with functional activities, such as walking or get into/out of a chair. This thesis explored the clinical relevance of biomechanics and how wearable sensor technology may be used to assess how people move when their clinician is unable to directly observe them, such as at home or work. The findings of this thesis suggest that artificial intelligence can be used to process data from sensors to provide clinically important information about how people perform troublesome activities

    The Development of an assistive chair for elderly with sit to stand problems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyStanding up from a seated position, known as sit-to-stand (STS) movement, is one of the most frequently performed activities of daily living (ADLs). However, the aging generation are often encountered with STS issues owning to their declined motor functions and sensory capacity for postural control. The motivated is rooted from the contemporary market available STS assistive devices that are lack of genuine interaction with elderly users. Prior to the software implementation, the robot chair platform with integrated sensing footmat is developed with STS biomechanical concerns for the elderly. The work has its main emphasis on recognising the personalised behavioural patterns from the elderly users’ STS movements, namely the STS intentions and personalised STS feature prediction. The former is known as intention recognition while the latter is defined as assistance prediction, both achieved by innovative machine learning techniques. The proposed intention recognition performs well in multiple subjects scenarios with different postures involved thanks to its competence of handling these uncertainties. To the provision of providing the assistance needed by the elderly user, a time series prediction model is presented, aiming to configure the personalised ground reaction force (GRF) curve over time which suggests successful movement. This enables the computation of deficits between the predicted oncoming GRF curve and the personalised one. A multiple steps ahead prediction into the future is also implemented so that the completion time of actuation in reality is taken into account

    Scoring the Sit-to-Stand Performance of Parkinson's Patients with a Single Wearable Sensor

    Get PDF
    Monitoring disease progression in Parkinson's disease is challenging. Postural transfers by sit-to-stand motions are adapted to trace the motor performance of subjects. Wearable sensors such as inertial measurement units allow for monitoring motion performance. We propose quantifying the sit-to-stand performance based on two scores compiling kinematics, dynamics, and energy-related variables. Three groups participated in this research: asymptomatic young participants (n = 33), senior asymptomatic participants (n = 17), and Parkinson's patients (n = 20). An unsupervised classification was performed of the two scores to differentiate the three populations. We found a sensitivity of 0.4 and a specificity of 0.96 to distinguish Parkinson's patients from asymptomatic subjects. In addition, seven Parkinson's patients performed the sit-to-stand task "ON" and "OFF" medication, and we noted the scores improved with the patients' medication states (MDS-UPDRS III scores). Our investigation revealed that Parkinson's patients demonstrate a wide spectrum of mobility variations, and while one inertial measurement unit can quantify the sit-to-stand performance, differentiating between PD patients and healthy adults and distinguishing between "ON" and "OFF" periods in PD patients is still challenging

    Effects of Hemodialysis Therapy on Sit-to-Walk Characteristics in End Stage Renal Disease Patients

    Get PDF
    Patients with end stage renal diseases (ESRD) undergoing hemodialysis (HD) have high morbidity and mortality due to multiple causes; one of which is dramatically higher fall rates than the general population. In spite of the multiple efforts aiming to decrease the high mortality and improve quality of life in ESRD patients, limited success has been achieved. If adequate interventions for fall prevention are to be achieved, the functional and mobility mechanisms consistent with falls in this population must be understood. Human movements such as sit-to-walk (STW) tasks are clinically significant, and analysis of these movements provides a meaningful evaluation of postural and locomotor performance in elderly patients with functional limitations indicative of fall risks. In order to assess the effects of HD therapy on fall risks, 22 sessions of both pre- and post-HD measurements were obtained in six ESRD patients utilizing customized inertial measurement units (IMU). IMU signals were denoised using ensemble empirical mode decomposition and Savistky-Golay filtering methods to detect relevant events for identification of STW phases. The results indicated that patients were slower to get out of the chair (as measured by trunk flexion angular accelerations, time to peak trunk flexion, and overall STW completion time) following the dialysis therapy session. STW is a frequent movement in activities of daily living, and HD therapy may influence the postural and locomotor control of these movements. The analysis of STW movement may assist in not only assessing a patient’s physical status, but in identifying HD-related fall risk as well. This preliminary study presents a non-invasive method of kinematic measurement for early detection of increased fall risk in ESRD patients using portable inertial sensors for out-patient monitoring. This can be helpful in understanding the pathogenesis better, and improve awareness in health care providers in targeting interventions to identify individuals at risk for fall

    Ann Biomed Eng

    Get PDF
    Patients with end stage renal diseases (ESRD) undergoing hemodialysis (HD) have high morbidity and mortality due to multiple causes; one of which is dramatically higher fall rates than the general population. In spite of the multiple efforts aiming to decrease the high mortality and improve quality of life in ESRD patients, limited success has been achieved. If adequate interventions for fall prevention are to be achieved, the functional and mobility mechanisms consistent with falls in this population must be understood. Human movements such as sit-to-walk (STW) tasks are clinically significant, and analysis of these movements provides a meaningful evaluation of postural and locomotor performance in elderly patients with functional limitations indicative of fall risks. In order to assess the effects of HD therapy on fall risks, 22 sessions of both pre- and post-HD measurements were obtained in six ESRD patients utilizing customized inertial measurement units (IMU). IMU signals were denoised using ensemble empirical mode decomposition and Savistky-Golay filtering methods to detect relevant events for identification of STW phases. The results indicated that patients were slower to get out of the chair (as measured by trunk flexion angular accelerations, time to peak trunk flexion, and overall STW completion time) following the dialysis therapy session. STW is a frequent movement in activities of daily living, and HD therapy may influence the postural and locomotor control of these movements. The analysis of STW movement may assist in not only assessing a patient's physical status, but in identifying HD-related fall risk as well. This preliminary study presents a non-invasive method of kinematic measurement for early detection of increased fall risk in ESRD patients using portable inertial sensors for out-patient monitoring. This can be helpful in understanding the pathogenesis better, and improve awareness in health care providers in targeting interventions to identify individuals at risk for fall.L30 AG022963/AG/NIA NIH HHS/United StatesL30-AG022963-04/AG/NIA NIH HHS/United StatesR01-OH009222/OH/NIOSH CDC HHS/United States2014-04-01T00:00:00Z23212801PMC360669

    Wearable sensors and total knee arthroplasty: Assessing quantitative function to improve the patient experience

    Get PDF
    Osteoarthritis (OA) is a chronic degenerative disease for which the only long-term solution is total knee arthroplasty (TKA), though many patients are not satisfied with their TKA. Satisfaction in TKA patients is not well understood. Subjective questionnaires and objective functional tests have been previously used to assess TKA outcomes, but both have disadvantages. Wearable sensors have facilitated affordable biomechanical measurement in OA and TKA populations. The objective of this work was to use wearable sensors alongside functional tests with TKA patients to identify quantitative function that related to subjective function and satisfaction. A wearable sensor-setup was validated before implementation in a TKA population. Quantitative sensor metrics describing the motion of individual leg segments was found to correlate with subjective function and satisfaction. This study provided strong evidence towards the connection between quantitative function and patient experience and may be able to identify functional deficiencies for targeted therapy to improve satisfaction

    The use of wearable inertial measurement units to assess gait and balance outcomes related to fall risk among older adults

    Get PDF
    Due to the prevalence and associated health, social and economic costs of falls among older adults, this thesis originally aimed to identify a more robust and objective way of assessing fall risk factors with the use of wearable inertial measurement units (IMU). However, due to unforeseen circumstances, the direction of the thesis had to be changed. Therefore, the thesis aimed to investigate whether gait and balance outcomes related to fall risk, when measured with wearable IMUs are sensitive to conditions which may replicate clinical and habitual environments. In Study one, a systematic scoping review was conducted to identify characteristic differences between fallers and non-fallers with the use of IMUs. The lower trunk was the most common anatomical location, whilst walking a predetermined distance indoors was the most common test used with IMUs to distinguish between fallers and non-fallers. In Study two, seventeen older and seventeen younger adults performed multiple walking and standing tasks in a laboratory. Older adults had a lower root mean square of the IMU acceleration signal, harmonic ratio and greater step time asymmetry compared to younger adults. The use of a cognitive dual task caused gait to be slower and less symmetrical among older and younger adults. Trunk displacement to quantify trunk sway during quiet standing was greater among older adults and increased as standing conditions became more difficult. Older adults exhibited distinct differences in gait when walking indoors and outdoors. The results of Study two suggested that IMUs may identify differences between older and younger adults regarding walking speed and time to completion of clinical tests, even when a stopwatch could not. In Study three, twenty older and twenty younger adults had IMUs attached to different anatomical locations during waking hours. There were differences in all gait variables when walking supervised in the laboratory and unsupervised in habitual indoor environments for both older and younger adults. There were also large differences in gait variables when walking indoors and outdoors. These results suggest the need for future studies in continuous, outdoor and unsupervised free-living conditions, with regards to fall risk assessments. This thesis demonstrates that gait and balance outcomes related to fall risk, when measured using wearable IMUs, are sensitive to conditions resembling habitual and clinical environments among both older and younger adults. This could prove valuable for the enhancement of future fall risk research

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    IMUs: validation, gait analysis and system’s implementation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Falls are a prevalent problem in actual society. The number of falls has been increasing greatly in the last fifteen years. Some falls result in injuries and the cost associated with their treatment is high. However, this is a complex problem that requires several steps in order to be tackled. Namely, it is crucial to develop strategies that recognize the mode of locomotion, indicating the state of the subject in various situations, namely normal gait, step before fall (pre-fall) and fall situation. Thus, this thesis aims to develop a strategy capable of identifying these situations based on a wearable system that collects information and analyses the human gait. The strategy consists, essentially, in the construction and use of Associative Skill Memories (ASMs) as tools for recognizing the locomotion modes. Consequently, at an early stage, the capabilities of the ASMs for the different modes of locomotion were studied. Then, a classifier was developed based on a set of ASMs. Posteriorly, a neural network classifier based on deep learning was used to classify, in a similar way, the same modes of locomotion. Deep learning is a technique actually widely used in data classification. These classifiers were implemented and compared, providing for a tool with a good accuracy in recognizing the modes of locomotion. In order to implement this strategy, it was previously necessary to carry out extremely important support work. An inertial measurement units’ (IMUs) system was chosen due to its extreme potential to monitor outpatient activities in the home environment. This system, which combines inertial and magnetic sensors and is able to perform the monitoring of gait parameters in real time, was validated and calibrated. Posteriorly, this system was used to collect data from healthy subjects that mimicked Fs. Results have shown that the accuracy of the classifiers was quite acceptable, and the neural networks based classifier presented the best results with 92.71% of accuracy. As future work, it is proposed to apply these strategies in real time in order to avoid the occurrence of falls.As quedas são um problema predominante na sociedade atual. O número de quedas tem aumentado bastante nos últimos quinze anos. Algumas quedas resultam em lesões e o custo associado ao seu tratamento é alto. No entanto, trata-se de um problema complexo que requer várias etapas a serem abordadas. Ou seja, é crucial desenvolver estratégias que reconheçam o modo de locomoção, indicando o estado do sujeito em várias situações, nomeadamente, marcha normal, passo antes da queda (pré-queda) e situação de queda. Assim, esta tese tem como objetivo desenvolver uma estratégia capaz de identificar essas situações com base num sistema wearable que colete informações e analise a marcha humana. A estratégia consiste, essencialmente, na construção e utilização de Associative Skill Memories (ASMs) como ferramenta para reconhecimento dos modos de locomoção. Consequentemente, numa fase inicial, foram estudadas as capacidades das ASMs para os diferentes modos de locomoção. Depois, foi desenvolvido um classificador baseado em ASMs. Posteriormente, um classificador de redes neuronais baseado em deep learning foi utilizado para classificar, de forma semelhante, os mesmos modos de locomoção. Deep learning é uma técnica bastante utilizada em classificação de dados. Estes classificadores foram implementados e comparados, fornecendo a uma ferramenta com uma boa precisão no reconhecimento dos modos de locomoção. Para implementar esta estratégia, era necessário realizar previamente um trabalho de suporte extremamente importante. Um sistema de unidades de medição inercial (IMUs), foi escolhido devido ao seu potencial extremo para monitorizar as atividades ambulatórias no ambiente domiciliar. Este sistema que combina sensores inerciais e magnéticos e é capaz de efetuar a monitorização de parâmetros da marcha em tempo real, foi validado e calibrado. Posteriormente, este Sistema foi usado para adquirir dados da marcha de indivíduos saudáveis que imitiram quedas. Os resultados mostraram que a precisão dos classificadores foi bastante aceitável e o classificador baseado em redes neuronais apresentou os melhores resultados com 92.71% de precisão. Como trabalho futuro, propõe-se a aplicação destas estratégias em tempo real de forma a evitar a ocorrência de quedas
    corecore