185 research outputs found

    Measurement Of Nose Radius And Wear Of Multiple Cutting Tool Inserts From 2-D Scanned Images With Sub-Pixel Edge Detection

    Get PDF
    The nose radius of a cutting tool insert is known to affect the surface quality of the finished workpiece, machining stability, power input as well as the condition of the insert due to the direct interaction of the tool nose with the workpiece during machining. Conventional approaches for measuring the nose radius using profile projector and toolmaker’s microscope require manually selected points from the nose profile which cause inaccurate measurement of nose radius since only a few points from the sector of an imperfect circle from the nose edge are selected. A novel approach for the measurement of nose radius and wear of multiple cutting inserts using 2-D images scanned using a high resolution low-cost flatbed scanner is proposed. Investigation on the effect of scanner’s lighting conditions, tool orientation and location on the accuracy of sub-pixel edge detection of nose radii were carried out. The results of the measurement of nose radii using the scanner approach were compared with a profile projector and the variable-focus 3-D metrology system (Alicona InfiniteFocus). The polar-radius transformation method was used to calculate the projected wear area, Ap and maximum nose flank wear, VBc(max) before and after machining using images from scanner and InfiniteFocus. The measurement of the nose radii of multiple inserts yielded average error of less than 1%. The digital profile projector method yielded a highest error of about 11% in nose radii measurement. For the projected nose wear and nose flank measurement, the maximum deviation are about 6% with a slight underestimation of nose wear for scanner due to the resolution difference between the two scanning methods. Thus, the low-cost and high accuracy approach proposed in this study enables fast and accurate assessment of multiple tools and provides a new solution for tool nose inspection and wear measurement

    Detection Of Chipping In Ceramic Cutting Inserts From Workpiece Profile Signature During Turning Process Using Machine Vision

    Get PDF
    Ceramic tools are prone to chipping due to their low impact toughness. Tool chipping significantly decreases the surface finish quality and dimensional accuracy of the workpiece. Thus, in-process detection of chipping in ceramic tools is important especially in unattended machining. Existing in-process tool failure detection methods using sensor signals have limitations in detecting tool chipping. The monitoring of tool wear from the workpiece profile using machine vision has great potential to be applied in-process, however no attempt has been made to detect tool chipping. In this work, a vision-based approach has been developed to detect tool chipping in ceramic insert from 2-D workpiece profile signature. The profile of the workpiece surface was captured using a DSLR camera. The surface profile was extracted to sub-pixel accuracy using invariant moment method. The effect of chipping in the ceramic cutting tools on the workpiece profile was investigated using autocorrelation function (ACF) and fast Fourier transform (FFT). Detection of onset tool chipping was conducted by using the sub-window FFT and continuous wavelet transform (CWT). Chipping in the ceramic tool was found to cause the peaks of ACF of the workpiece profile to decrease rapidly as the lag distance increased and deviated significantly from one another at different workpiece rotation angles. From FFT analysis the amplitude of the fundamental feed frequency increases steadily with cutting duration during gradual wear, however, fluctuates significantly after tool has chipped. The stochastic behaviour of the cutting process after tool chipping leads to a sharp increase in the amplitude of spatial frequencies below the fundamental feed frequency. CWT method was found more effective to detect the onset of tool chipping at 16.5 s instead of 17.13 s by sub-window FFT. Root mean square of CWT coefficients for the workpiece profile at higher scale band was found to be more sensitive to chipping and thus can be used as an indicator to detect the occurrence of the tool chipping in ceramic inserts

    Detection Of Chipping In Ceramic Cutting Inserts From Workpiece Profile Signature During Turning Process Using Machine Vision

    Get PDF
    Ceramic tools are prone to chipping due to their low impact toughness. Tool chipping significantly decreases the surface finish quality and dimensional accuracy of the workpiece. Thus, in-process detection of chipping in ceramic tools is important especially in unattended machining. Existing in-process tool failure detection methods using sensor signals have limitations in detecting tool chipping. The monitoring of tool wear from the workpiece profile using machine vision has great potential to be applied in-process, however no attempt has been made to detect tool chipping. In this work, a vision-based approach has been developed to detect tool chipping in ceramic insert from 2-D workpiece profile signature. The profile of the workpiece surface was captured using a DSLR camera. The surface profile was extracted to sub-pixel accuracy using invariant moment method. The effect of chipping in the ceramic cutting tools on the workpiece profile was investigated using autocorrelation function (ACF) and fast Fourier transform (FFT). Detection of onset tool chipping was conducted by using the sub-window FFT and continuous wavelet transform (CWT). Chipping in the ceramic tool was found to cause the peaks of ACF of the workpiece profile to decrease rapidly as the lag distance increased and deviated significantly from one another at different workpiece rotation angles. From FFT analysis the amplitude of the fundamental feed frequency increases steadily with cutting duration during gradual wear, however, fluctuates significantly after tool has chipped. The stochastic behaviour of the cutting process after tool chipping leads to a sharp increase in the amplitude of spatial frequencies below the fundamental feed frequency. CWT method was found more effective to detect the onset of toolchipping at 16.5 s instead of 17.13 s by sub-window FFT. Root mean square of CWT coefficients for the workpiece profile at higher scale band was found to be more xxiv sensitive to chipping and thus can be used as an indicator to detect the occurrence of the tool chipping in ceramic inserts

    Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4×6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was developed called 4-axis single point diamond machining. This technique is 2-10x faster than micro-milling, depending on how advanced the micro-milling equipment is. With array microscope fabrication still in development, a single prototype of the lens designed for an array microscope was fabricated using single point diamond turning. The prototype microscope objective was validated in a pre-clinical trial. The prototype was compared with a standard clinical microscope objective in diagnostic tests. High concordance, a Fleiss’s kappa of 0.88, was found between diagnoses made using the prototype and standard microscope objectives and a reference test. With the lens designed and validated and an advanced fabrication process developed, array microscopy technology is advanced to the point where it is feasible to rapidly prototype an array microscope for detection of tuberculosis and translate array microscope from an innovative concept to a device that can save lives

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Investigation of 3DP technology for fabrication of surgical simulation phantoms

    Get PDF
    The demand for affordable and realistic phantoms for training, in particular for functional endoscopic sinus surgery (FESS), has continuously increased in recent years. Conventional training methods, such as current physical models, virtual simulators and cadavers may have restrictions, including fidelity, accessibility, cost and ethics. In this investigation, the potential of three-dimensional printing for the manufacture of biologically representative simulation materials for surgery training phantoms has been investigated. A characterisation of sinus anatomical elements was performed through CT and micro-CT scanning of a cadaveric sinus portion. In particular, the relevant constituent tissues of each sinus region have been determined. Secondly, feedback force values experienced during surgical cutting have been quantified with an actual surgical instrument, specifically modified for this purpose. Force values from multiple post-mortem subjects and different areas of the paranasal sinuses have been gathered and used as a benchmark for the optimisation of 3D-printing materials. The research has explored the wide range of properties achievable in 3DP through post-processing methods and variation of printing parameters. For this latter element, a machine-vision system has been developed to monitor the 3DP in real time. The combination of different infiltrants allowed the reproduction of force values comparable to those registered from cadaveric human tissue. The internal characteristics of 3D printed samples were shown to influence their fracture behaviour under resection. Realistic appearance under endoscopic conditions has also been confirmed. The utilisation of some of the research has also been demonstrated in another medical (non-surgical) training application. This investigation highlights a number of capabilities, and also limitations, of 3DP for the manufacturing of representative materials for application in surgical training phantoms

    Tooling technology for bulk forming of micro components

    Get PDF

    Tube and Sheet Metal Forming Processes and Applications

    Get PDF
    At present, the manufacturing industry is focused on the production of lighter weight components with better mechanical properties and always fulfilling all the environmental requirements. These challenges have caused a need for developing manufacturing processes in general, including obviously those devoted in particular to the development of thin-walled metallic shapes, as is the case with tubular and sheet metal parts and devices.This Special Issue is thus devoted to research in the fields of sheet metal forming and tube forming, and their applications, including both experimental and numerical approaches and using a variety of scientific and technological tools, such as forming limit diagrams (FLDs), analysis on formability and failure, strain analysis based on circle grids or digital image correlation (DIC), and finite element analysis (FEA), among others.In this context, we are pleased to present this Special Issue dealing with recent studies in the field of tube and sheet metal forming processes and their main applications within different high-tech industries, such as the aerospace, automotive, or medical sectors, among others

    Compact array emitters for terahertz spectroscopy and imaging

    Get PDF

    Advances in Micro and Nano Manufacturing: Process Modeling and Applications

    Get PDF
    Micro- and nanomanufacturing technologies have been researched and developed in the industrial environment with the goal of supporting product miniaturization and the integration of new functionalities. The technological development of new materials and processing methods needs to be supported by predictive models which can simulate the interactions between materials, process states, and product properties. In comparison with the conventional manufacturing scale, micro- and nanoscale technologies require the study of different mechanical, thermal, and fluid dynamics, phenomena which need to be assessed and modeled.This Special Issue is dedicated to advances in the modeling of micro- and nanomanufacturing processes. The development of new models, validation of state-of-the-art modeling strategies, and approaches to material model calibration are presented. The goal is to provide state-of-the-art examples of the use of modeling and simulation in micro- and nanomanufacturing processes, promoting the diffusion and development of these technologies
    corecore