1,607 research outputs found

    Laser based tracking and spin measurement

    Get PDF
    The sports ball market is extremely competitive and in the US alone valued in excess of $1305 million (SGMA 2008). Original equipment manufacturers (OEMs) are continually trying to create a competitive edge over their rivals. In order to research and develop sports balls it is vital to quantitatively measure launch and flight characteristics of the ball, in an attempt to create a ball that has better flight and/or impact characteristics. A launch or flight monitor allows consistent measurement and benchmarking of the ball under test. Current top of the range soccer ball monitors are assessed for performance. Predominantly the sports engineering community uses high speed video (HSV) cameras in this benchmarking process. This technique however is extremely susceptible to errors in spin measurement. These errors are explored in detail and recommendations are given in order to improve the measurements. The properties of laser light make it an ideal tool for accurate, non-contact measurements. It has gained such widespread use, that living in the 21" century it is inconceivable to avoid laser technology. In this thesis, optical laser techniques are pursued for ball launch angle, velocity and spin measurement. In order to successfully utilise these techniques a system that is capable of accurately steering the laser beam to the desired target is developed. A novel laser tracking system (NLTS) has been designed, developed and proven to work successfully, allowing tracking capability of an arbitrarily moving soccer ball, that has no special fiducials. The system is demonstrated to be capable of measuring the position of the ball in space, therefore the NLTS is capable of acting as a launch monitor. The system is proven to track soccer balls in the laboratory and in a more realistic player testing environment. A valuable design feature is that the natural and ambient lighting conditions are inconsequential for the operation of the system. The tracking technique could be applied to any sports ball and could conceivably be transferred to other applications, e.g. military and automotive. Single point vibrometry work and the NLTS are combined to add spin measurement capability. Actual and measured spin rate values show high levels of similarity when tracking a ball with angular, but no translational velocity. A purpose built 'pendulum rig' is used to carry out measurements on a ball with both translational and angular velocity. The testing highlights how influential the radial measurement distance from the spin axis is, regarding the outputted spin rate value. The current set-up would require further development to allow accurate spin rate measurement using the 'pendulum rig'. The main sources of error and recommendations for future developments of this device are outlined and discussed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Spinoff 1997: 25 Years of Reporting Down-to-Earth Benefits

    Get PDF
    The 25th annual issue of NASA's report on technology transfer and research and development (R&D) from its ten field centers is presented. The publication is divided into three sections. Section 1 comprises a summary of R&D over the last 25 years. Section 2 presents details of the mechanisms NASA uses to transfer technology to private industry as well as the assistance NASA provides in commercialization efforts. Section 3, which is the focal point of the publication, features success stories of manufacturers and entrepreneurs in developing commercial products and services that improve the economy and life in general

    New Game Physics - Added Value for Transdisciplinary Teams

    Get PDF
    This study focused on game physics, an area of computer game design where physics is applied in interactive computer software. The purpose of the research was a fresh analysis of game physics in order to prove that its current usage is limited and requires advancement. The investigations presented in this dissertation establish constructive principles to advance game physics design. The main premise was that transdisciplinary approaches provide significant value. The resulting designs reflected combined goals of game developers, artists and physicists and provide novel ways to incorporate physics into games. The applicability and user impact of such new game physics across several target audiences was thoroughly examined. In order to explore the transdisciplinary nature of the premise, valid evidence was gathered using a broad range of theoretical and practical methodologies. The research established a clear definition of game physics within the context of historical, technological, practical, scientific, and artistic considerations. Game analysis, literature reviews and seminal surveys of game players, game developers and scientists were conducted. A heuristic categorization of game types was defined to create an extensive database of computer games and carry out a statistical analysis of game physics usage. Results were then combined to define core principles for the design of unconventional new game physics elements. Software implementations of several elements were developed to examine the practical feasibility of the proposed principles. This research prototype was exposed to practitioners (artists, game developers and scientists) in field studies, documented on video and subsequently analyzed to evaluate the effectiveness of the elements on the audiences. The findings from this research demonstrated that standard game physics is a common but limited design element in computer games. It was discovered that the entertainment driven design goals of game developers interfere with the needs of educators and scientists. Game reviews exemplified the exaggerated and incorrect physics present in many commercial computer games. This “pseudo physics” was shown to have potentially undesired effects on game players. Art reviews also indicated that game physics technology remains largely inaccessible to artists. The principal conclusion drawn from this study was that the proposed new game physics advances game design and creates value by expanding the choices available to game developers and designers, enabling artists to create more scientifically robust artworks, and encouraging scientists to consider games as a viable tool for education and research. The practical portion generated tangible evidence that the isolated “silos” of engineering, art and science can be bridged when game physics is designed in a transdisciplinary way. This dissertation recommends that scientific and artistic perspectives should always be considered when game physics is used in computer-based media, because significant value for a broad range of practitioners in succinctly different fields can be achieved. The study has thereby established a state of the art research into game physics, which not only offers other researchers constructive principles for future investigations, but also provides much-needed new material to address the observed discrepancies in game theory and digital media design

    UNLV Magazine

    Full text link

    The efficacy of virtual reality in professional soccer

    Get PDF
    Professional soccer clubs have taken an interest to virtual reality, however, only a paucity of evidence exists to support its use in the soccer training ground environment. Further, several soccer virtual reality companies have begun providing solutions to teams, claiming to test specific characteristics of players, yet supportive evidence for certain measurement properties remain absent from the literature. The aims of this thesis were to explore the efficacy of virtual reality being used in the professional football training ground environment. To do so, this thesis looked to explore the fundamental measurement properties of soccer specific virtual reality tests, along with the perceptions of professional coaches, backroom staff, and players that could use virtual reality. The first research study (Chapter 3) aimed to quantify the learning effect during familiarisation trials of a soccer-specific virtual reality task. Thirty-four professional soccer players age, stature, and body mass: mean (SD) 20 (3.4) years; 180 (7) cm; 79 (8) kg, participated in six trials of a virtual reality soccer passing task. The task required participants to receive and pass 30 virtual soccer balls into highlighted mini-goals that surrounded the participant. The number of successful passes were recorded in each trial. The one-sided Bayesian paired samples t-test indicated very strong evidence in favour of the alternative hypothesis (H1)(BF10 = 46.5, d = 0.56 [95% CI = 0.2 to 0.92]) for improvements in total goals scored between trial 1: 13.6 (3.3) and trial 2: 16 (3.3). Further, the Bayesian paired-samples equivalence t-tests indicated strong evidence in favour of H1 (BF10 = 10.2, d = 0.24 [95% CI = -0.09 to 0.57]) for equivalence between trial 4: 16.7 (3.7) and trial 5: 18.2 (4.7); extreme evidence in favour of H1 (BF10 = 132, d = -0.02 [95% CI = -0.34 to 0.30]) for equivalence between trials 5 and 6: 18.1 (3.5); and moderate evidence in favour of H1 (BF10 = 8.4, d = 0.26 [95% CI = -0.08 to 0.59]) for equivalence between trials 4 and 6. Sufficient evidence indicated that a learning effect took place between the first two trials, and that up to five trials might be necessary for performance to plateau in a specific virtual reality soccer passing task.The second research study (Chapter 4) aimed to assess the validity of a soccer passing task by comparing passing ability between virtual reality and real-world conditions. A previously validated soccer passing test was replicated into a virtual reality environment. Twenty-nine soccer players participated in the study which required them to complete as many passes as possible between two rebound boards within 45 s. Counterbalancing determined the condition order, and then for each condition, participants completed four familiarisation trials and two recorded trials, with the best score being used for analysis. Sense of presence and fidelity were also assessed via questionnaires to understand how representative the virtual environments were compared to the real-world. Results showed that between conditions a difference was observed (EMM = -3.9, 95% HDI = -5.1 to -2.7) with the number of passes being greater in the real-world (EMM = 19.7, 95% HDI = 18.6 to 20.7) than in virtual reality (EMM = 15.7, 95% HDI = 14.7 to 16.8). Further, several subjective differences for fidelity between the two conditions were reported, notably the ability to control the ball in virtual reality which was suggested to have been more difficult than in the real-world. The last research study (Chapter 5) aimed to compare and quantify the perceptions of virtual reality use in soccer, and to model behavioural intentions to use this technology. This study surveyed the perceptions of coaches, support staff, and players in relation to their knowledge, expectations, influences, and barriers of using virtual reality via an internet-based questionnaire. To model behavioural intention, modified questions and constructs from the Unified Theory of Acceptance and Use of Technology were used, and the model was analysed through partial least squares structural equation modelling. Respondents represented coaches and support staff (n = 134) and players (n = 64). All respondents generally agreed that virtual reality should be used to improve tactical awareness and cognition, with its use primarily in performance analysis and rehabilitation settings. Generally, coaches and support staff agreed that monetary cost, coach buy-in and limited evidence base were barriers towards its use. In a sub-sample of coaches and support staff without access to virtual reality (n = 123), performance expectancy was the strongest construct in explaining behavioural intention to use virtual reality, followed by facilitating conditions (i.e., barriers) construct which had a negative association with behavioural intention. This thesis aimed to explore the measurement properties of soccer specific virtual reality tests, and the perceptions of staff and players who might use the technology. The key findings from exploring the measurement properties were (1) evidence of a learning curve, suggesting the need for multiple familiarisation trials before collecting data, and (2) a lack of evidence to support the validity of a virtual reality soccer passing test as evident by a lack of agreement to a real-world equivalent. This finding raises questions on the suitability for virtual reality being used to measure passing skill related performance. The key findings from investigating the perceptions of users included, using the technology to improve cognition and tactical awareness, and using it in rehabilitation and performance analysis settings. Future intention to use was generally positive, and driven by performance related factors, yet several barriers exist that may prevent its widespread use. In Chapter 7 of the thesis, a reflective account is presented for the reader, detailing some of the interactions made with coaches, support staff and players in relation to the personal, moral, and ethical challenges faced as a practitioner-researcher, working and studying, respectively, in a professional soccer club

    Psychomotor mechanisms underpinning performance changes in high-pressure situations

    Get PDF
    Pressurised situations have the potential to influence the performance of visual-motor tasks. The aim of this thesis was to investigate psychomotor mechanisms that may be responsible for such performance changes. A series of experimental studies were conducted in order to examine kinematic (Chapter 2) and attentional (Chapters 3 - 5) mechanisms. Performance pressure was successfully manipulated in all studies but performance was consistently maintained at a group-level. In the first experiment, individual differences in performance responses to pressure were found to correlate with kinematic changes, with decreases in movement amplitudes correlating with poorer performances. In the second experiment, pressure led to attentional narrowing as indicated by impaired performance of a useful field of view task. Pressure-induced changes in useful field of view correlated with performance changes. The third and fourth experiments demonstrated that pressure-induced changes in cognitive anxiety positively correlated with changes in the randomness of gaze behavior, which suggested that pressure has the potential to impact attentional control

    Characterization of Quad-Copter Positioning Systems and the Effect of Pose Uncertainties on Field Probe Measurements

    Get PDF
    When measuring the Radar Cross Section (RCS) of a test object, many uncertainties must be accounted for, such as the non-homogeneous nature of the medium between the radar test equipment and the platform under test. There are a variety of other error sources, including clutter and Radio Frequency Interference (RFI), motivating the development of techniques to measure and model the uncertainties in RCS measurements. The following research, in unison with prior and current efforts, intends to reduce the impact of these uncertainties by utilizing a unique two-way field probe in the form of a geodesic sphere encompassing a commercial quad-copter aircraft. The probe is used to measure the incident fields in the target volume in an effort to quantify one of the key sources of uncertainty in an RCS measurement, distortions in the incident wave. In order to do this, the geodesic sphere must be fully understood. This research determined the uncertainty of the probe by creating a calibrated data set of the probe’s RCS, extracting the calibrated RCS based on the measurement flight path, comparing the measured with the calibrated data, and determining the deviation in the difference. The accuracy of the comparison, and therefore the measurement, depends on the accuracy of the flight path. An uncertainty in the probe’s position and orientation during flight translates into a field measurement uncertainty. These uncertainties were determined for the Parrot Bebop quad-copter, a differential GPS, and a Vicon™ system. Each uncertainty was fed into the measurement model and their measurement uncertainties were determined. Field measurement accuracies of \u3c 2° in phase and \u3c 0.05V/m in magnitude were demonstrated

    Attention and time constraints in performing and learning a table tennis forehand shot

    Get PDF
    This is a section on p. S95 of article 'Verbal and Poster: Motor Development, Motor Learning and Control, and Sport and Exercise Psychology' in Journal of Sport and Exercise Psychology, 2010, v.32, p.S36-S237published_or_final_versio

    EEG coherence between the verbal-analytical region (T3) and the motor-planning region (Fz) increases under stress in explicit motor learners but not implicit motor learners

    Get PDF
    This journal supplement contains abstracts of NASPSPA 2010Free Communications - Verbal and Poster: Motor Learning and Controlpublished_or_final_versionThe Annual Conference of the North American Society for the Psychology of Sport and Physical Activity (NASPSPA 2010), Tucson, AZ., 10-12 June 2010. In Journal of Sport and Exercise Psychology, 2010, v. 32 suppl., p. S13
    • …
    corecore