3,235 research outputs found

    Biped robot walking control on inclined planes with fuzzy parameter adaptation

    Get PDF
    The bipedal structure is suitable for a robot functioning in the human environment, and assuming assistive roles. However, the bipedal walk is a poses a difficult control problem. Walking on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the upper body is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. A newly defined measure of the oscillatory behavior of the body pitch angle and the average value of the pelvis pitch angle are used as inputs to the fuzzy adaptation system. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the fuzzy adaptation algorithms presented are successful in enabling the robot to climb slopes of 5.6 degrees (10 percent)

    A Reactive and Efficient Walking Pattern Generator for Robust Bipedal Locomotion

    Full text link
    Available possibilities to prevent a biped robot from falling down in the presence of severe disturbances are mainly Center of Pressure (CoP) modulation, step location and timing adjustment, and angular momentum regulation. In this paper, we aim at designing a walking pattern generator which employs an optimal combination of these tools to generate robust gaits. In this approach, first, the next step location and timing are decided consistent with the commanded walking velocity and based on the Divergent Component of Motion (DCM) measurement. This stage which is done by a very small-size Quadratic Program (QP) uses the Linear Inverted Pendulum Model (LIPM) dynamics to adapt the switching contact location and time. Then, consistent with the first stage, the LIPM with flywheel dynamics is used to regenerate the DCM and angular momentum trajectories at each control cycle. This is done by modulating the CoP and Centroidal Momentum Pivot (CMP) to realize a desired DCM at the end of current step. Simulation results show the merit of this reactive approach in generating robust and dynamically consistent walking patterns

    Humanoid robot walking control on inclined planes

    Get PDF
    The humanoid bipedal structure is suitable for a assitive robot functioning in the human environment. However, the bipedal walk is a difficult control problem. Walking just on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the feet is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. The average value of the body pitch angle is used as the inputs to the fuzzy logic system. A foot pitch orientation compensator implemented independently for the two feet complements the fuzyy controller. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the control method presented is successful in enabling the robot to climb slopes of 8.5 degrees (15 percent grade)

    Trajectory generation with natural ZMP references for the biped walking robot SURALP

    Get PDF
    Bipedal locomotion has good obstacle avoidance properties. A robot with human appearance has advantages in human-robot communication. However, walking control is difficult due to the complex robot dynamics involved. Stable reference generation is significant in walking control. The Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped robots. This is the main route of reference generation in this paper too. We employ a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass (CoM) trajectory is obtained from predefined ZMP reference trajectories by Fourier series approximation. We reported simulation results with this algorithm in our previous works. This paper presents the first experimental results. Also the use of a ground push phase before foot take-offs reported in our previous works is tested first time together with our ZMP based reference trajectory. The reference generation strategy is tested via walking experiments on the 29 degrees-of-freedom (DOF) human sized full body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments indicate that the proposed reference trajectory generation technique is successful

    Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking

    Get PDF
    In this paper, we demonstrate methods for bipedal walking control based on the Capture Point (CP) methodology. In particular, we introduce a method to intuitively derive a CP reference trajectory from the next three steps and extend the linear inverted pendulum (LIP) based CP tracking controller introduced in [1], generalizing it to a model that contains vertical CoM motions and changes in angular momentum. Respecting the dynamics of general multibody systems, we propose a measurement-based compensation of multi-body effects, which leads to a stable closed-loop dynamics of bipedal walking robots. In addition we propose a ZMP projection method, which prevents the robots feet from tilting and ensures the best feasible CP tracking. The extended CP controller’s performance is validated in OpenHRP3 [2] simulations and compared to the controller proposed in [1]

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape
    • …
    corecore