45,959 research outputs found

    A noncontact ultrasonic platform for structural inspection

    Get PDF
    Miniature robotic vehicles are receiving increasing attention for use in nondestructive testing (NDE) due to their attractiveness in terms of cost, safety, and their accessibility to areas where manual inspection is not practical. Conventional ultrasonic inspection requires the provision of a suitable coupling liquid between the probe and the structure under test. This necessitates either an on board reservoir or umbilical providing a constant flow of coupling fluid, neither of which are practical for a fleet of miniature robotic inspection vehicles. Air-coupled ultrasound offers the possibility of couplant-free ultrasonic inspection. This paper describes the sensing methodology, hardware platform and algorithms used to integrate an air-coupled ultrasonic inspection payload into a miniature robotic vehicle platform. The work takes account of the robot's inherent positional uncertainty when constructing an image of the test specimen from aggregated sensor measurements. This paper concludes with the results of an automatic inspection of a aluminium sample

    Multi-scale gapped smoothing algorithm for robust baseline-free damage detection in optical infrared thermography

    Get PDF
    Flash thermography is a promising technique to perform rapid non-destructive testing of composite materials. However, it is well known that several difficulties are inherently paired with this approach, such as non-uniform heating, measurement noise and lateral heat diffusion effects. Hence, advanced signal-processing techniques are indispensable in order to analyze the recorded dataset. One such processing technique is Gapped Smoothing Algorithm, which predicts a gapped pixelā€™s value in its sound state from a measurement in the defected state by evaluating only its neighboring pixels. However, the standard Gapped Smoothing Algorithm uses a fixed spatial gap size, which induces issues to detect variable defect sizes in a noisy dataset. In this paper, a Multi-Scale Gapped Smoothing Algorithm (MSGSA) is introduced as a baseline-free image processing technique and an extension to the standard Gapped Smoothing Algorithm. The MSGSA makes use of the evaluation of a wide range of spatial gap sizes so that defects of highly different dimensions are identified. Moreover, it is shown that a weighted combination of all assessed spatial gap sizes significantly improves the detectability of defects and results in an (almost) zero-reference background. The technique thus effectively suppresses the measurement noise and excitation non-uniformity. The efficiency of the MSGSA technique is evaluated and confirmed through numerical simulation and an experimental procedure of flash thermography on carbon fiber reinforced polymers with various defect sizes

    Si photonic device uniformity improvement using wafer-scale location specific processing

    Get PDF
    We report two-fold improvement in Si photonic device uniformity over a 200mm SOI wafer through location specific processing. A within wafer thickness non-uniformity of 0.8nm yielding a grating fiber-coupler peak-wavelength non-uniformity of 1.8nm is achieved

    Independent Component Analysis for Improved Defect Detection in Guided Wave Monitoring

    Get PDF
    Guided wave sensors are widely used in a number of industries and have found particular application in the oil and gas industry for the inspection of pipework. Traditionally this type of sensor was used for one-off inspections, but in recent years there has been a move towards permanent installation of the sensor. This has enabled highly repeatable readings of the same section of pipe, potentially allowing improvements in defect detection and classification. This paper proposes a novel approach using independent component analysis to decompose repeat guided wave signals into constituent independent components. This separates the defect from coherent noise caused by changing environmental conditions, improving detectability. This paper demonstrates independent component analysis applied to guided wave signals from a range of industrial inspection scenarios. The analysis is performed on test data from pipe loops that have been subject to multiple temperature cycles both in undamaged and damaged states. In addition to processing data from experimental damaged conditions, simulated damage signals have been added to ā€œundamagedā€ experimental data, so enabling multiple different damage scenarios to be investigated. The algorithm has also been used to process guided wave signals from finite element simulations of a pipe with distributed shallow general corrosion, within which there is a patch of severe corrosion. In all these scenarios, the independent component analysis algorithm was able to extract the defect signal, rejecting coherent noise

    Probing Single Vacancies in Black Phosphorus at the Atomic Level

    Get PDF
    Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.Comment: Nano Letters (2017
    • ā€¦
    corecore