47,533 research outputs found

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Digital zero noise extrapolation for quantum error mitigation

    Full text link
    Zero-noise extrapolation (ZNE) is an increasingly popular technique for mitigating errors in noisy quantum computations without using additional quantum resources. We review the fundamentals of ZNE and propose several improvements to noise scaling and extrapolation, the two key components in the technique. We introduce unitary folding and parameterized noise scaling. These are digital noise scaling frameworks, i.e. one can apply them using only gate-level access common to most quantum instruction sets. We also study different extrapolation methods, including a new adaptive protocol that uses a statistical inference framework. Benchmarks of our techniques show error reductions of 18X to 24X over non-mitigated circuits and demonstrate ZNE effectiveness at larger qubit numbers than have been tested previously. In addition to presenting new results, this work is a self-contained introduction to the practical use of ZNE by quantum programmers.Comment: 11 pages, 7 figure

    Comparison of SAGE and classical multi-antenna algorithms for multipath mitigation in real-world environment

    Get PDF
    The performance of the Space Alternating Generalized Expectation Maximisation (SAGE) algorithm for multipath mitigation is assessed in this paper. Numerical simulations have already proven the potential of SAGE in navigation context, but practical aspects of the implementation of such a technique in a GNSS receiver are the topic for further investigation. In this paper, we will present the first results of SAGE implementation in a real world environmen

    Learning-based quantum error mitigation

    Full text link
    If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near-optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly-emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.Comment: 28 pages, 19 figure

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    Deep phase modulation interferometry

    Get PDF
    We have developed a method to equip homodyne interferometers with the capability to operate with constant high sensitivity over many fringes for continuous real-time tracking. The method can be considered as an extension of the "J_1...J_4" methods, and its enhancement to deliver very sensitive angular measurements through Differential Wavefront Sensing is straightforward. Beam generation requires a sinusoidal phase modulation of several radians in one interferometer arm. On a stable optical bench, we have demonstrated a long-term sensitivity over thousands of seconds of 0.1 mrad/sqrt[Hz] that correspond to 20 pm/sqrt[Hz] in length, and 10 nrad/sqrt[Hz] in angle at millihertz frequencies

    Performance assessment of time–frequency RFI mitigation techniques in microwave radiometry

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio–frequency interference (RFI) signals are a well-known threat for microwave radiometry (MWR) applications. In order to alleviate this problem, different approaches for RFI detection and mitigation are currently under development. Since RFI signals are man made, they tend to have their power more concentrated in the time–frequency (TF) space as compared to naturally emitted noise. The aim of this paper is to perform an assessment of different TF RFI mitigation techniques in terms of probability of detection, resolution loss (RL), and mitigation performance. In this assessment, six different kinds of RFI signals have been considered: a glitch, a burst of pulses, a wide-band chirp, a narrow-band chirp, a continuous wave, and a wide-band modulation. The results show that the best performance occurs when the transform basis has a similar shape as compared to the RFI signal. For the best case performance, the maximum residual RFI temperature is 14.8 K, and the worst RL is 8.4%. Moreover, the multiresolution Fourier transform technique appears as a good tradeoff solution among all other techniques since it can mitigate all RFI signals under evaluation with a maximum residual RFI temperature of 21 K, and a worst RL of 26.3%. Although the obtained results are still far from an acceptable bias Misplaced < 1 K for MWR applications, there is still work to do in a combined test using the information gathered simultaneously by all mitigation techniques, which could improve the overall performance of RFI mitigation.Peer ReviewedPostprint (author's final draft
    • …
    corecore