3,874 research outputs found

    Slow‐Wave Structures Utilizing Superconducting Thin‐Film Transmission Lines

    Get PDF
    Slow‐wave propagation of electromagnetic waves in transmission lines formed of thin‐film superconductors has been studied theoretically and experimentally. Previous theoretical analyses have been extended to include nonlocal theories. Strong dependence of phase velocity is found on film thickness and interfilm spacing when these become less than a few penetration depths. Velocity is also modified by coherence length, mean free path, nature of reflection of electrons at the film surfaces, and by temperature and magnetic field. Experimental measurements were made to verify the dependence on thickness, spacing, and temperature by means of a resonance technique. Agreement with theory was excellent in the case of temperature. Data taken for varying thickness and spacing verified the general trend of theoretical predictions. They indicate a nonlocal behavior with some specular reflection, but scatter of the data taken for different films prevents precise comparison of theory and experiment. Estimates of bulk penetration depths were made for indium, λ_In = 648±130 Å. For tantalum a rough estimate could be made of λTa = 580 Å. Data were consistent with the estimate of coherence length for indium of Ο_0 ≈ 3000 Å. Velocity was found to be independent of frequency in the range 50–500 MHz, while losses increased as the square. Pulse measurements indicated that delays of several microseconds and storage of several thousand pulses on a single line are feasible

    Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature

    Full text link
    We present a high-resolution microwave spectrometer to measure the frequency-dependent complex conductivity of a superconducting thin film near the critical temperature. The instrument is based on a broadband measurement of the complex reflection coefficient, S11S_{\rm 11}, of a coaxial transmission line, which is terminated to a thin film sample with the electrodes in a Corbino disk shape. In the vicinity of the critical temperature, the standard calibration technique using three known standards fails to extract the strong frequency dependence of the complex conductivity induced by the superconducting fluctuations. This is because a small unexpected difference between the phase parts of S11S_{\rm 11} for a short and load standards gives rise to a large error in the detailed frequency dependence of the complex conductivity near the superconducting transition. We demonstrate that a new calibration procedure using the normal-state conductivity of a sample as a load standard resolves this difficulty. The high quality performance of this spectrometer, which covers the frequency range between 0.1 GHz and 10 GHz, the temperature range down to 10 K, and the magnetic field range up to 1 T, is illustrated by the experimental results on several thin films of both conventional and high temperature superconductors.Comment: 13 pages, 14 figure

    Investigation of superconducting interactions and amorphous semiconductors

    Get PDF
    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements

    Microwave response of vortices in superconducting thin films of Re and Al

    Full text link
    Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave resonant circuits contributes excess loss and can result in substantial reductions in the quality factor. Thus, understanding the microwave vortex response in superconducting thin films is important for the design of such circuits, including superconducting qubits and photon detectors, which are typically operated in small, but non-zero, magnetic fields. By cooling in fields of the order of 100 Ό\muT and below, we have characterized the magnetic field and frequency dependence of the microwave response of a small density of vortices in resonators fabricated from thin films of Re and Al, which are common materials used in superconducting microwave circuits. Above a certain threshold cooling field, which is different for the Re and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This different behavior can be described in the framework of a general vortex dynamics model.Comment: Published in Physical Review B 79,174512(2009); preprint version with higher resolution figures available at http://physics.syr.edu/~bplourde/bltp-publications.ht

    An argon ion beam milling process for native AlOx\text{AlO}_\text{x} layers enabling coherent superconducting contacts

    Get PDF
    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ⋅Όm2\,\mathrm{m}\Omega \cdot \mu \mathrm{m}^2 at a frequency of 4.5 GHz. Resonators for which only 6%6\% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 10610^6 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.Comment: 4 pages, 4 figures, supplementary materia

    Zero-bias anomalies on Sr0.88_{0.88}La0.12_{0.12}CuO2_2 thin films

    Full text link
    High-impedance contacts made on the surface of Sr0.88_{0.88}La0.12_{0.12}CuO2_2 superconducting thin films systematically display a zero-bias anomaly. We consider two-level systems (TLS) as the origin of this anomaly. We observe that the contribution of some TLS to the contact resistance is weakened by a magnetic field. We show that this could result from the increase of the TLS relaxation rate in the superconducting state, due to its ability to create pairs of quasiparticles out of the condensate, when located close to the surface of the film

    A broadband microwave Corbino spectrometer at 3^3He temperatures and high magnetic fields

    Full text link
    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK to 6 K and at applied magnetic fields up to 8 Tesla. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8 −- 9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature and field range for thin superconducting films and highly resistive graphene samples
    • 

    corecore