129 research outputs found

    ๋ฌด์•ˆ๊ฒฝ์‹ 3 ์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํˆฌ์‚ฌํ˜• ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๊นŠ์ด ์œตํ•ฉ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ด€์ฐฐ ํŠน์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ์ด๋ณ‘ํ˜ธ.In this dissertation, various methods for enhancing the viewing characteristics of the depth-fused display are proposed with combination of projection-type displays or integral imaging display technologies. Depth-fused display (DFD) is one kind of the volumetric three-dimensional (3D) displays composed of multiple slices of depth images. With a proper weighting to the luminance of the images on the visual axis of the observer, it provides continuous change of the accommodation within the volume confined by the display layers. Because of its volumetric property depth-fused 3D images can provide very natural volumetric images, but the base images should be located on the exact positions on the viewing axis, which gives complete superimpose of the images. If this condition is not satisfied, the images are observed as two separated images instead of continuous volume. This viewing characteristic extremely restricts the viewing condition of the DFD resulting in the limited applications of DFDs. While increasing the number of layers can result in widening of the viewing angle and depth range by voxelizing the reconstructed 3D images, the required system complexity also increases along with the number of image layers. For solving this problem with a relatively simple configuration of the system, hybrid techniques are proposed for DFDs. The hybrid technique is the combination of DFD with other display technologies such as projection-type displays or autostereoscopic displays. The projection-type display can be combined with polarization-encoded depth method for projection of 3D information. Because the depth information is conveyed by polarization states, there is no degradation in spatial resolution or video frame in the reconstructed 3D images. The polarized depth images are partially selected at the stacked polarization selective screens according to the given depth states. As the screen does not require any active component for the reconstruction of images, projection part and reconstruction part can be totally separated. Also, the projection property enables the scalability of the reconstructed images like a conventional projection display, which can give immersive 3D experience by providing large 3D images. The separation of base images due to the off-axis observation can be compensated by shifting the base images along the viewers visual axis. It can be achieved by adopting multi-view techniques. While conventional multi-view displays provide different view images for different viewers positions, it can be used for showing shifted base images for DFD. As a result, multiple users can observe the depth-fused 3D images at the same time. Another hybrid method is the combination of floating method with DFD. Convex lens can optically translate the depth position of the object. Based on this principle, the optical gap between two base images can be extended beyond the physical dimension of the images. Employing the lens with a short focal length, the gap between the base images can be greatly reduced. For a practical implementation of the system, integral imaging method can be used because it is composed of array of lenses. The floated image can be located in front of the lens as well as behind the lens. Both cases result in the expansion of depth range beyond the physical gap of base images, but real-mode floating enables interactive application of the DFD. In addition to the expansion of depth range, the viewing angle of the hybrid system can be increased by employing tracking method. Viewer tracking method also enables dynamic parallax for the DFD with real-time update of base images along with the viewing direction of the tracked viewers. Each chapter of this dissertation explains the theoretical background of the proposed hybrid method and demonstrates the feasibility of the idea with experimental systems.Abstract i Contents iv List of Figures vi List of Tables xii Chapter 1 Introduction 1 1.1 Overview of three-dimensional displays 1 1.2 Motivation 7 1.3 Scope and organization 9 Chapter 2 Multi-layered depth-fused display with projection-type display 10 2.1 Introduction 10 2.2 Polarization-encoded depth information for depth-fused display 12 2.3 Visualization with passive scattering film 16 2.4 Summary 30 Chapter 3 Compact depth-fused display with enhanced depth and viewing angle 31 3.1 Introduction 31 3.2 Enhancement of viewing characteristics 34 3.2.1 Viewing angle enhancement using multi-view method 34 3.2.2 Depth enhancement using integral imaging 37 3.2.3 Depth and viewing angle enhancement 39 3.3 Implementation of experimental system with enhanced viewing parameters 44 3.4 Summary 51 Chapter 4 Real-mode depth-fused display with viewer tracking 52 4.1 Introduction 52 4.2 Viewer tracking method 55 4.2.1 Viewer-tracked depth-fused display 55 4.2.2 Viewer-tracked integral imaging for a depth-fused display 58 4.3 Implementation of viewer-tracked integral imaging 63 4.4 Summary 71 Chapter 5 Conclusion 72 Bibliography 74 ์ดˆ๋ก 83Docto

    A stereo display prototype with multiple focal distances

    Full text link
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee

    ํˆฌ๋ช…ํ•œ ๋งค์งˆ์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ ๋ถ„์„์„ ์ด์šฉํ•œ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ด๋ณ‘ํ˜ธ.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ด‘ํ•™์ ์œผ๋กœ ํˆฌ๋ช…ํ•œ ๋งค์งˆ์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง‘์•ฝ์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผ์˜ํ•œ๋‹ค. 3์ฐจ์› ์˜์ƒ ์žฅ์น˜๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์š”์†Œ์™€ ์‹œ์ฒญ์ž ์‚ฌ์ด์˜ ๋ฌผ๋ฆฌ์ ์ธ ๊ฑฐ๋ฆฌ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์€ ์ง‘์•ฝ์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ๋” ๋งŽ์€ ์–‘์˜ 3์ฐจ์› ์˜์ƒ ์ •๋ณด๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ ๋˜ํ•œ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋†’์€ ๋Œ€์—ญํญ๊ณผ ์ž‘์€ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ๊ด‘ํ•™ ํ˜„์ƒ์„ ์ด์šฉํ•œ๋‹ค. ๋“ฑ๋ฐฉ์„ฑ ๋ฌผ์งˆ์—์„œ์˜ ์ „๋ฐ˜์‚ฌ ํŠน์„ฑ๊ณผ ์ด๋ฐฉ์„ฑ ๋ฌผ์งˆ์—์„œ์˜ ๋ณต๊ตด์ ˆ ํŠน์„ฑ์ด๋‹ค. ๊ฐ€์‹œ๊ด‘ ์˜์—ญ์—์„œ ๋น›์„ ํˆฌ๊ณผ์‹œํ‚ค๋Š” ๋‘ ๋งค์งˆ์˜ ๊ณ ์œ  ๊ด‘ํ•™ ํŠน์„ฑ์„ ๊ธฐ์กด์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ด‘ ๊ฒฝ๋กœ ์ถ”์ ์„ ํ†ตํ•˜์—ฌ ๋ถ„์„ํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ์˜ ์ „๋ฐ˜์‚ฌ ํŠน์„ฑ์€ ์ง‘์•ฝ์  ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค. ํˆฌ์‚ฌ ๊ด‘ํ•™๊ณ„์˜ ์˜์ƒ ์ •๋ณด๋Š” ๊ด‘ ๋„ํŒŒ๋กœ๋กœ ์ž…์‚ฌ, ๋‚ด๋ถ€์—์„œ ์ „๋ฐ˜์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ง„ํ–‰ํ•˜๊ณ , ์ด์— ์ˆ˜ํ‰ ํˆฌ์‚ฌ ๊ฑฐ๋ฆฌ๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์˜ ๋‘๊ป˜๋กœ ์ œํ•œ๋œ๋‹ค. ๋‹ค์ˆ˜์˜ ์ „๋ฐ˜์‚ฌ ์ดํ›„ ์˜์ƒ ์ •๋ณด๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์˜ ์ถœ์‚ฌ ๋ฉด์„ ํ†ตํ•ด ๋น ์ ธ๋‚˜๊ฐ€๊ณ , ๋ Œ์ฆˆ์— ์˜ํ•˜์—ฌ ์ตœ์  ์‹œ์ฒญ ์ง€์ ์—์„œ ์‹œ์ ์„ ํ˜•์„ฑํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ ๋‚ด๋ถ€์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ๋ฅผ ๋“ฑ๊ฐ€ ๋ชจ๋ธ์„ ํ†ตํ•˜์—ฌ ์กฐ์‚ฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์ˆ˜์˜ ํˆฌ์‚ฌ ๊ด‘ํ•™๊ณ„๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋œ ๋‹ค์ˆ˜์˜ ์‹œ์  ์˜์ƒ์ด ์™œ๊ณก๋˜๋Š” ๊ฒƒ์„ ๋ถ„์„ํ•˜๊ณ  ๋ณด์ •ํ•œ๋‹ค. 10๊ฐœ์˜ ์‹œ์ ์„ ์ œ๊ณตํ•˜๋Š” ์ง‘์•ฝ์  ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ๊ฒ€์ฆํ•œ๋‹ค. ํ–ฅ์ƒ๋œ ๋Œ€์—ญํญ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋‹ค์ค‘ ์ดˆ์  ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์„ ์œ„ํ•œ ์ด๋ฐฉ์„ฑ ํŒ์„ ์ด์šฉํ•œ ํŽธ๊ด‘ ๋‹ค์ค‘ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋น›์˜ ํŽธ๊ด‘ ์ƒํƒœ, ์ด๋ฐฉ์„ฑ ํŒ์˜ ๊ด‘์ถ• ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ๊ด‘ ๊ฒฝ๋กœ๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค. ์ธก๋ฉด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์€ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹œ์ ์„ ์ธก๋ฉด ๋ฐฉํ–ฅ์œผ๋กœ ๋‘ ๋ฐฐ๋กœ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ๊นŠ์ด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์€ ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ๋‹ค์ค‘ ์ดˆ์  ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•œ๋‹ค. ๊ด‘ ๊ฒฝ๋กœ ์ถ”์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ด๋ฐฉ์„ฑ ํŒ์˜ ๋ชจ์–‘, ๊ด‘์ถ•, ํŒŒ์žฅ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์„ ๋ถ„์„ํ•œ๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋Šฅ์— ๋งž๋„๋ก ์„ค๊ณ„๋œ ์ด๋ฐฉ์„ฑ ํŒ๊ณผ ํŽธ๊ด‘ ํšŒ์ „์ž๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ, ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋‹ค์ค‘ ์ดˆ์  ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋Œ€์—ญํญ์ด 2๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ฐ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์‹œ์ž‘ํ’ˆ์„ ์ œ์ž‘ํ•˜๊ณ , ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์™€ ๋ณต๊ตด์ ˆ ๋ฌผ์งˆ์„ ์ด์šฉํ•˜์—ฌ ๊ทธ ๊ด‘ ๊ฒฝ๋กœ๋ฅผ ๋ถ„์„, ๋Œ€ํ˜•์˜ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ๊ณผ ๊ฐœ์ธ ์‚ฌ์šฉ์ž์˜ ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ํ‘œํ˜„ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ์™€ ์ด๋ฐฉ์„ฑ ํŒ์€ ๊ธฐ์กด์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ๊ณผ ์‰ฝ๊ฒŒ ๊ฒฐํ•ฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ํ–ฅํ›„ ์†Œํ˜•๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ค‘๋Œ€ํ˜• 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์˜ ์ง‘์•ฝํ™”์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.This dissertation investigates approaches for realizing compact three-dimensional (3D) display systems based on optical path analysis in optically transparent medium. Reducing the physical distance between 3D display apparatuses and an observer is an intuitive method to realize compact 3D display systems. In addition, it is considered compact 3D display systems when they present more 3D data than conventional systems while preserving the size of the systems. For implementing compact 3D display systems with high bandwidth and minimized structure, two optical phenomena are investigated: one is the total internal reflection (TIR) in isotropic materials and the other is the double refraction in birefringent crystals. Both materials are optically transparent in visible range and ray tracing simulations for analyzing the optical path in the materials are performed to apply the unique optical phenomenon into conventional 3D display systems. An optical light-guide with the TIR is adopted to realize a compact multi-projection 3D display system. A projection image originated from the projection engine is incident on the optical light-guide and experiences multiple folds by the TIR. The horizontal projection distance of the system is effectively reduced as the thickness of the optical light-guide. After multiple folds, the projection image is emerged from the exit surface of the optical light-guide and collimated to form a viewing zone at the optimum viewing position. The optical path governed by the TIR is analyzed by adopting an equivalent model of the optical light-guide. Through the equivalent model, image distortion for multiple view images in the optical light-guide is evaluated and compensated. For verifying the feasibility of the proposed system, a ten-view multi-projection 3D display system with minimized projection distance is implemented. To improve the bandwidth of multi-projection 3D display systems and head-mounted display (HMD) systems, a polarization multiplexing technique with the birefringent plate is proposed. With the polarization state of the image and the direction of optic axis of the birefringent plate, the optical path of rays varies in the birefringent material. The optical path switching in the lateral direction is applied in the multi-projection system to duplicate the viewing zone in the lateral direction. Likewise, a multi-focal function in the HMD is realized by adopting the optical path switching in the longitudinal direction. For illuminating the detailed optical path switching and the image characteristic such as an astigmatism and a color dispersion in the birefringent material, ray tracing simulations with the change of optical structure, the optic axis, and wavelengths are performed. By combining the birefringent material and a polarization rotation device, the bandwidth of both the multi-projection 3D display and the HMD is doubled in real-time. Prototypes of both systems are implemented and the feasibility of the proposed systems is verified through experiments. In this dissertation, the optical phenomena of the TIR and the double refraction realize the compact 3D display systems: the multi-projection 3D display for public and the multi-focal HMD display for individual. The optical components of the optical light-guide and the birefringent plate can be easily combined with the conventional 3D display system and it is expected that the proposed method can contribute to the realization of future 3D display systems with compact size and high bandwidth.Chapter 1 Introduction 10 1.1 Overview of modern 3D display providing high quality 3D images 10 1.2 Motivation of this dissertation 15 1.3 Scope and organization 18 Chapter 2 Compact multi-projection 3D displays with optical path analysis of total internal reflection 20 2.1 Introduction 20 2.2 Principle of compact multi-projection 3D display system using optical light-guide 23 2.2.1 Multi-projection 3D display system 23 2.2.2 Optical light-guide for multi-projection 3D display system 26 2.2.3 Analysis on image characteristics of projection images in optical light-guide 34 2.2.4 Pre-distortion method for view image compensation 44 2.3 Implementation of prototype of multi-projection 3D display system with reduced projection distance 47 2.4 Summary and discussion 52 Chapter 3 Compact multi-projection 3D displays with optical path analysis of double refraction 53 3.1 Introduction 53 3.2 Principle of viewing zone duplication in multi-projection 3D display system 57 3.2.1 Polarization-dependent optical path switching in birefringent crystal 57 3.2.2 Analysis on image formation through birefringent plane-parallel plate 60 3.2.3 Full-color generation of dual projection 64 3.3 Implementation of prototype of viewing zone duplication of multi-projection 3D display system 68 3.3.1 Experimental setup for viewing zone duplication of multi-projection 3D display system 68 3.3.2 Luminance distribution measurement of viewing zone duplication of multi-projection 3D display system 74 3.4 Summary and discussion 79 Chapter 4 Compact multi-focal 3D HMDs with optical path analysis of double refraction 81 4.1 Introduction 81 4.2 Principle of multi-focal 3D HMD system 86 4.2.1 Multi-focal 3D HMD system using Savart plate 86 4.2.2 Astigmatism compensation by modified Savart plate 89 4.2.3 Analysis on lateral chromatic aberration of extraordinary plane 96 4.2.4 Additive type compressive light field display 101 4.3 Implementation of prototype of multi-focal 3D HMD system 104 4.4 Summary and discussion 112 Chapter 5 Conclusion 114 Bibliography 117 Appendix 129 ์ดˆ ๋ก 130Docto

    Roadmap on 3D integral imaging: Sensing, processing, and display

    Get PDF
    This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field

    Colour depth-from-defocus incorporating experimental point spread function measurements

    Get PDF
    Depth-From-Defocus (DFD) is a monocular computer vision technique for creating depth maps from two images taken on the same optical axis with different intrinsic camera parameters. A pre-processing stage for optimally converting colour images to monochrome using a linear combination of the colour planes has been shown to improve the accuracy of the depth map. It was found that the first component formed using Principal Component Analysis (PCA) and a technique to maximise the signal-to-noise ratio (SNR) performed better than using an equal weighting of the colour planes with an additive noise model. When the noise is non-isotropic the Mean Square Error (MSE) of the depth map by maximising the SNR was improved by 7.8 times compared to an equal weighting and 1.9 compared to PCA. The fractal dimension (FD) of a monochrome image gives a measure of its roughness and an algorithm was devised to maximise its FD through colour mixing. The formulation using a fractional Brownian motion (mm) model reduced the SNR and thus produced depth maps that were less accurate than using PCA or an equal weighting. An active DFD algorithm to reduce the image overlap problem has been developed, called Localisation through Colour Mixing (LCM), that uses a projected colour pattern. Simulation results showed that LCM produces a MSE 9.4 times lower than equal weighting and 2.2 times lower than PCA. The Point Spread Function (PSF) of a camera system models how a point source of light is imaged. For depth maps to be accurately created using DFD a high-precision PSF must be known. Improvements to a sub-sampled, knife-edge based technique are presented that account for non-uniform illumination of the light box and this reduced the MSE by 25%. The Generalised Gaussian is presented as a model of the PSF and shown to be up to 16 times better than the conventional models of the Gaussian and pillbox

    Instabilities of volatile films and drops

    Get PDF
    We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname โ€œoctopiโ€ due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DJW)-JPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact line instabilities which appear. We find that the decrease of IPA concentration in mixtures leads to transition from โ€œoctopiโ€ to mushroom-like instabilities. Through manipulation of our experimental set up, we also find that the mechanism responsible for these instabilities appears to be mostly insensitive to both the external application of convection to the gas phase, and the doping of the gas phase with vapor in order to create the saturated environment. In order to better understand the โ€œoctopiโ€ instability, we develop a theoretical model for evaporation of a pure liquid drop on a thermally conductive solid substrate. This model includes all relevant physical effects, including evaporation, thermal conductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil, disjoining pressure, and gravity. The crucial ingredient in this problem is the evaporation model, since it influences both the motion of the drop contact line, and the temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two evaporation models: the equilibrium โ€œlensโ€ model and the non-equilibrium one-sided (NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface, the โ€œlensโ€ model also assumes that evaporation proceeds in a (vapor) diffusion-limited regime, therefore bringing the focus to the gas phase, where the problem of vapor mass diffusion is to be solved, which invokes analogy with the problem of lens-shaped conductor from electrostatics. On the other hand, NEOS model assumes non-equilibrium at the liquid-gas interface and a reaction-limited regime of evaporation; the liquid and gas phases are decoupled using the one-sided assumption, and hence, the problem is to be solved in the liquid phase only. We use lubrication approximation and derive a single governing equation for the evolution of drop thickness, which includes both models. An experimental procedure is described next, which we use in order to estimate the volatility parameter corresponding to each model. We also describe the numerical code, which we use to solve the governing equation for drop thickness, and show how this equation can be used to predict which evaporation model is more appropriate for a particular physical problem. Next, we perform linear stability analysis (LSA) of perturbed thin film configuration. We find excellent agreement between our numerical results and LSA predictions. Furthermore, these results indicate that the IPA/Si configuration is the most unstable one, in direct agreement with experimental results. We perform numerical simulations in the simplified 2d geometry (cross section of the drop) for both planar and radial symmetry and show that our theoretical model reproduces the main features of the experiment, namely, the formation of โ€œoctopusโ€ -like features ahead of the contact line of an evaporating drop. Finally, we perform quasi-3d numerical simulations of evaporating drops, where stability to azimuthal perturbations of the contact line is examined. We recover the โ€œoctopiโ€ instability for IPA/Si configuration, similarly as seen in the experiments

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149โ€“164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ยฑ1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Real-time analysis of video signals

    Get PDF
    Many practical and experimental systems employing image processing techniques have been built by other workers for various applications. Most of these systems are computer-based and very few operate in a real time environment. The objective of this work is to build a microprocessor-based system for video image processing. The system is used in conjunction with an on-line TV camera and processing is carried out in real time. The enormous storage requirement of digitized TV signals and the real time constraint suggest that some simplification of the data must take place prior to any viable processing. Data reduction is attained through the representation of objects by their edges, an approach often adopted for feature extraction in pattern recognition systems. A new technique for edge detection by applying comparison criteria to differentials at adjacent pixels of the video image is developed and implemented as a preprocessing hardware unit. A circuit for the generation of the co-ordinates of edge points is constructed to free the processing computer of this task, allowing it more time for on-line analysis of video signals. Besides the edge detector and co-ordinate generator the hardware built consists of a microprocessor system based on a Texas Instruments T.US 9900 device, a first-in-first-out buffer store and interface circuitry to a TV camera and display devices. All hardware modules and their power supplies are assembled in one unit to provide a standalone instrument. The problem chosen for investigation is analysis of motion in a visual scene. Aspects of motion studied concern the tracking of moving objects with simple geometric shapes and description of their motion. More emphasis is paid to the analysis of human eye movements and measurement of its point-of-regard which has many practical applications in the fields of physiology and psychology. This study provides a basis for the design of a processing unit attached to an oculometer to replace bulky minicomputer-based eye motion analysis systems. Programs are written for storage, analysis and display of results in real time

    Spatial and human factors affecting image quality and viewer experience of stereoscopic 3D in television and cinema

    Get PDF
    PhD ThesisThe horizontal offset in the two eyesโ€™ locations in the skull means that they receive slightly different images of the world. The visual cortex uses these disparities to calculate where in depth different objects are, absolutely (physical distance from the viewer, perceived very imprecisely) and relatively (whether one object is in front of another, perceived with great precision). For well over a century, stereoscopic 3D (S3D) technology has existed which can generate an artificial sense of depth by displaying images with slight disparities to the different retinas. S3D technology is now considerably cheaper to access in the home, but remains a niche market, partly reflecting problems with viewer experience and enjoyment of S3D. This thesis considers some of the factors that could affect viewer experience of S3D content. While S3D technology can give a vivid depth percept, it can also lead to distortions in perceived size and shape, particularly if content is viewed at the wrong distance or angle. Almost all S3D content is designed for a viewing angle perpendicular to the screen, and with a recommended viewing distance, but little is known about the viewing distance typically used for S3D, or the effect of viewing angle. Accordingly, Chapter 2 of this thesis reports a survey of members of the British public. Chapters 3 and 4 report two experiments, one designed to assess the effect of oblique viewing, and another to consider the interaction between S3D and perceived size. S3D content is expensive to generate, hence producers sometimes โ€œfakeโ€ 3D by shifting 2D content behind the screen plane. Chapter 5 investigates viewer experience with this fake 3D, and finds it is not a viable substitute for genuine S3D while also examining whether viewers fixate on different image features when video content is viewed in S3D, as compared to 2D.part-funded by BSkyB and EPSRC as a CASE PhD studentship supporting PH

    A real-time low-cost vision sensor for robotic bin picking

    Get PDF
    This thesis presents an integrated approach of a vision sensor for bin picking. The vision system that has been devised consists of three major components. The first addresses the implementation of a bifocal range sensor which estimates the depth by measuring the relative blurring between two images captured with different focal settings. A key element in the success of this approach is that it overcomes some of the limitations that were associated with other related implementations and the experimental results indicate that the precision offered by the sensor discussed in this thesis is precise enough for a large variety of industrial applications. The second component deals with the implementation of an edge-based segmentation technique which is applied in order to detect the boundaries of the objects that define the scene. An important issue related to this segmentation technique consists of minimising the errors in the edge detected output, an operation that is carried out by analysing the information associated with the singular edge points. The last component addresses the object recognition and pose estimation using the information resulting from the application of the segmentation algorithm. The recognition stage consists of matching the primitives derived from the scene regions, while the pose estimation is addressed using an appearance-based approach augmented with a range data analysis. The developed system is suitable for real-time operation and in order to demonstrate the validity of the proposed approach it has been examined under varying real-world scenes
    • โ€ฆ
    corecore