3,281 research outputs found

    Inside Dropbox: Understanding Personal Cloud Storage Services

    Get PDF
    Personal cloud storage services are gaining popularity. With a rush of providers to enter the market and an increasing of- fer of cheap storage space, it is to be expected that cloud storage will soon generate a high amount of Internet traffic. Very little is known about the architecture and the perfor- mance of such systems, and the workload they have to face. This understanding is essential for designing efficient cloud storage systems and predicting their impact on the network. This paper presents a characterization of Dropbox, the leading solution in personal cloud storage in our datasets. By means of passive measurements, we analyze data from four vantage points in Europe, collected during 42 consecu- tive days. Our contributions are threefold: Firstly, we are the first to study Dropbox, which we show to be the most widely-used cloud storage system, already accounting for a volume equivalent to around one third of the YouTube traffic at campus networks on some days. Secondly, we characterize the workload typical users in different environments gener- ate to the system, highlighting how this reflects on network traffic. Lastly, our results show possible performance bot- tlenecks caused by both the current system architecture and the storage protocol. This is exacerbated for users connected far from control and storage data-center

    The Quest for Bandwidth Estimation Techniques for large-scale Distributed Systems

    Get PDF
    In recent years the research community has developed many techniques to estimate the end-to-end available bandwidth of an Internet path. This important metric has been proposed for use in several distributed systems and, more recently, has even been considered to improve the congestion control mechanism of TCP. Thus, it has been suggested that some existing estimation techniques could be used for this purpose. However, existing tools were not designed for large-scale deployments and were mostly validated in controlled settings, considering only one measurement running at a time. In this paper, we argue that current tools, while offering good estimates when used alone, might not work in large-scale systems where several estimations severely interfere with each other. We analyze the properties of the measurement paradigms employed today and discuss their functioning, study their overhead and analyze their interference. Our testbed results show that current techniques are insufficient as they are. Finally, we will discuss and propose some principles that should be taken into account for including available bandwidth measurements in large-scale distributed systems. 1

    Characterization and Identification of Cloudified Mobile Network Performance Bottlenecks

    Get PDF
    This study is a first attempt to experimentally explore the range of performance bottlenecks that 5G mobile networks can experience. To this end, we leverage a wide range of measurements obtained with a prototype testbed that captures the key aspects of a cloudified mobile network. We investigate the relevance of the metrics and a number of approaches to accurately and efficiently identify bottlenecks across the different locations of the network and layers of the system architecture. Our findings validate the complexity of this task in the multi-layered architecture and highlight the need for novel monitoring approaches that intelligently fuse metrics across network layers and functions. In particular, we find that distributed analytics performs reasonably well both in terms of bottleneck identification accuracy and incurred computational and communication overhead.Comment: 17 pages, 16 figures, documentclass[journal,comsoc]{IEEEtran}, corrected titl
    • …
    corecore