3,609 research outputs found

    Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

    Get PDF
    Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring and affecting system operation and resource utilization at runtime. Dynamic runtime control of these mechanisms can tailor system operation to the characteristics and behavior of the current workload, resulting in improved performance. However, developing effective models for system control can be challenging. Existing methods often require extensive manual effort, computation time, and domain knowledge to identify relevant low-level performance metrics, relate low-level performance metrics and high-level control decisions to workload performance, and to evaluate the resulting control models. This dissertation develops a general framework, based on the contextual bandit, for describing and learning effective models for runtime system control. Random profiling is used to characterize the relationship between workload behavior, system configuration, and performance. The framework is evaluated in the context of two applications of progressive complexity; first, the selection of paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory manager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads with cross-core contention for shared memory resources, such as the last-level cache and memory bandwidth. The resulting models for both applications are competitive in comparison to existing runtime control approaches. For paging mode selection, the resulting model provides equivalent performance to the state of the art while substantially reducing the computation requirements of profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based feature selection method is evaluated for identifying relevant low-level performance metrics related to hardware memory prefetching

    LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed

    Full text link
    Running off-site software middleboxes at third-party service providers has been a popular practice. However, routing large volumes of raw traffic, which may carry sensitive information, to a remote site for processing raises severe security concerns. Prior solutions often abstract away important factors pertinent to real-world deployment. In particular, they overlook the significance of metadata protection and stateful processing. Unprotected traffic metadata like low-level headers, size and count, can be exploited to learn supposedly encrypted application contents. Meanwhile, tracking the states of 100,000s of flows concurrently is often indispensable in production-level middleboxes deployed at real networks. We present LightBox, the first system that can drive off-site middleboxes at near-native speed with stateful processing and the most comprehensive protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox is the product of our systematic investigation of how to overcome the inherent limitations of secure enclaves using domain knowledge and customization. First, we introduce an elegant virtual network interface that allows convenient access to fully protected packets at line rate without leaving the enclave, as if from the trusted source network. Second, we provide complete flow state management for efficient stateful processing, by tailoring a set of data structures and algorithms optimized for the highly constrained enclave space. Extensive evaluations demonstrate that LightBox, with all security benefits, can achieve 10Gbps packet I/O, and that with case studies on three stateful middleboxes, it can operate at near-native speed.Comment: Accepted at ACM CCS 201

    Working Sets Past and Present

    Get PDF

    An accurate prefetching policy for object oriented systems

    Get PDF
    PhD ThesisIn the latest high-performance computers, there is a growing requirement for accurate prefetching(AP) methodologies for advanced object management schemes in virtual memory and migration systems. The major issue for achieving this goal is that of finding a simple way of accurately predicting the objects that will be referenced in the near future and to group them so as to allow them to be fetched same time. The basic notion of AP involves building a relationship for logically grouping related objects and prefetching them, rather than using their physical grouping and it relies on demand fetching such as is done in existing restructuring or grouping schemes. By this, AP tries to overcome some of the shortcomings posed by physical grouping methods. Prefetching also makes use of the properties of object oriented languages to build inter and intra object relationships as a means of logical grouping. This thesis describes how this relationship can be established at compile time and how it can be used for accurate object prefetching in virtual memory systems. In addition, AP performs control flow and data dependency analysis to reinforce the relationships and to find the dependencies of a program. The user program is decomposed into prefetching blocks which contain all the information needed for block prefetching such as long branches and function calls at major branch points. The proposed prefetching scheme is implemented by extending a C++ compiler and evaluated on a virtual memory simulator. The results show a significant reduction both in the number of page fault and memory pollution. In particular, AP can suppress many page faults that occur during transition phases which are unmanageable by other ways of fetching. AP can be applied to a local and distributed virtual memory system so as to reduce the fault rate by fetching groups of objects at the same time and consequently lessening operating system overheads.British Counci

    Prediction-Based Energy Saving Mechanism in 3GPP NB-IoT Networks

    Get PDF
    The current expansion of the Internet of things (IoT) demands improved communication platforms that support a wide area with low energy consumption. The 3rd Generation Partnership Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices should be available for over 10 years without requiring a battery replacement. Thus, a low energy consumption is essential for the successful deployment of this technology. Given that a high amount of energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism consists of two parts: first, the network architecture that predicts the uplink packet occurrence through a deep packet inspection; second, an algorithm that predicts the processing delay and pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism reduces the number of random accesses and the energy consumed by radio transmission. Simulation results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in comparison with that in the conventional NB-IoT method
    corecore