233 research outputs found

    An improved ECU for extending the lifespan of fuel injectors.

    Get PDF
    The research paper presents the outcomes of an improved Electronic Control Unit (ECU) designed for automobiles equipped with Electronic Fuel Injection (EFI). The primary objective was to find a sustainable solution for various issues caused by decayed Petrol fuel injectors recommended to be replaced, but not done due to reasonable justifications. The issues include emissions produced by improper fuel combustion, wastage of fuel and possible damage to engine since incomplete combustion leave residual matter inside the engine's combustion chamber. The ideology is to control the excess fuel released by decayed fuel injectors by modifying the control instructions produced by the ECU. Experimental results have proven that employment of the improved ECU could reduce the emissions up to 84.9 % with an average of 75.8% and most excitingly, the improved ECU is capable to renounce the fuel wastage caused by decayed injectors by a percentage over 70 %

    Study on the Application of Electronic Fuel Injection to Carburetted Single Cylinder 4 Stroke Engine

    Get PDF
    Single cylinder 4 stroke engine usually use carburettor for the fuel system. Tuning carburettor to get the right amount of fuel for different engine operating condition is not easy. Comparing with Electronic Fuel Injection System (EFI), carburettor has high fuel consumption, produces less power, leads to fuel delivery instability and affects the drivability of the vehicle. The study is conducted to show that EFI system produce better performance than carburetted system for the single · cylinder 4 stroke engine. The study is done by using engine simulation software, (iT POWER. Carburetted engine model is built in GT POWER and validations are being made with previous testing and simulation data. The carburetted model is then converted to EFI model. The EFI model is further tuned to improve the engine torque at low speed range. The findings show that EFI system produce better performance than carburetted system. Finding also shows that engine torque at low speed range can be improved by intake length tuning and AFR tuning

    Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors

    Full text link
    [EN] Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. In order to develop a complete pictitre of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. These factors increase the likelihood of spray collapse with longer injection durations.The X-ray experiments were performed at the 7-BM and 32-ID beam lines of the APS at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. Research was also performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia National Laboratories is managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA-0003525.Duke, DJ.; Kastengren, AL.; Matusik, KE.; Swantek, AB.; Powell, CF.; Payri, R.; Vaquerizo, D.... (2017). Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors. Experimental Thermal and Fluid Science. 88:608-621. https://doi.org/10.1016/j.expthermflusci.2017.07.015S6086218

    FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    Full text link

    Engine management system for dynamometer testing.

    Get PDF

    Mean Value SI Engine Model for Control Studies

    Get PDF

    Injection and combustion analysis and knock detection models for high-efficiency natural gas engines

    Get PDF
    Between different sectors, GHG emissions released by automotive one in 2010 were 4.5 GtCO2, the 14% of the total (32 GtCO2). Moreover, transport sector depends by more than 93% on oil, to be refined into gasoline and diesel fuel. Natural gas demand in transport sector has clearly increased in the last decade considering the lowest CO2 emissions per units of energy produced among different fossil fuels but it will be used mostly in the next future. Among different sectors, the 21 % of the energy demand is indeed supplied by NG, due to lower price and reduced GHG emissions. Storage type (compressed natural gas or liquefied natural gas) and vehicle type (road transport, marine transport, etc.) mainly discriminate natural gas engine layouts. Spark-ignition natural gas engine with different configurations will be indeed taken into consideration in this research project. Today, vehicles for the road transport fueled with compressed natural gas are mainly bi-fuel ones with both gasoline and natural gas feeding system with a manual or automatic switch. To mitigate knock event, engine layout is designed up to gasoline characteristics and engine performances with natural gas are not fully exploited. Mono-fuel configuration is capable to totally exploit the potential of natural gas. Therefore, this thesis will focus on the development of mono-fuel natural gas engines and improvements in injection and combustion strategies have to be reached by implementing new combustion chamber shape, improved ignition management and improved injection systems. A detailed analysis of the natural gas injection system will be hence carried out. Different injection system layouts will be analyzed: single-point, multi-point and direct injection systems, focusing on pressure reducing valve dynamic. As a matter of fact, its behavior affects the dynamic response of the injection system: mismatch between estimated injected fuel and real one could be appreciated. Typically, average rail pressure evaluated by ECU differs from mean value during injection window. Therefore, detailed analysis will be carried out on experimental data and a 0D-1D numerical model will be v developed to enhance the problem understanding. The research activity has been carried out in order to reproduce properly all the components of the pressure reducing valve which affects the dynamic response of the injections system. The numerical model will give useful explanation of the fuel mass injected mismatch. Then, a heavy-duty spark ignition compressed natural gas engine provided with two different injection systems will be examined. A standardized single-point injection system and a prototypal multi-point one will be evaluated so as to evaluate the possibility for performance enhancement. Cyclic variation and combustion efficiency for each configuration will be analyzed, proving the highest combustion efficiency of the prototypal configuration. Moreover, possible improvements with new engine control strategies will be investigated by adopting a 0D-1D numerical model. Single-point injection system modelling will prove the impossibility for efficiency improvement whereas multi-point injection system can be optimized by adopting enhanced strategies. As a matter of fact, fire-skipping mode will be simulated. Feasible reductions of fuel consumption under partial load conditions will be shown: decrease in fuel consumption up to 12% will be proved. Finally, a new methodology for combustion, cyclic variation and knock onset modelling will be presented. Indeed, high-efficiency natural gas engines could in turn lead to knock conditions due to higher CR and different combustion chamber shape. Experimental analysis at test bench could be carried out to calibrate appropriate ECU control strategies for knock mitigation, but an experimental campaign under knock condition is dangerous and costly due to possible failure of mechanical parts of the engine. Numerical models for auto-ignition prediction could hence overcome this problem. Therefore, a predictive fractal combustion tool will be calibrated: it will be able to perform a correct mass fraction burned evolution estimation for different operating conditions (speeds, loads, relative air-to-fuel ratio, etc.). Then, knock onset estimation based on auto-integral (its usage is satisfactory considering the high natural gas chemical stability) coupled with a new method for cyclic variability simulation will be adopted; these two phenomena are indeed strictly correlated. A correct estimation of the percentage of knocking cycles will be shown. This new methodology will be carried out and verified on two light-duty spark ignition engines with different characteristics so as to verify its goodness
    corecore