1,377 research outputs found

    Clustering and Community Detection in Directed Networks: A Survey

    Full text link
    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges non symmetric. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of applications. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method and tool for community detection and evaluation. The goal of this paper is to offer an in-depth review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.Comment: 86 pages, 17 figures. Physics Reports Journal (To Appear

    Overlapping modularity at the critical point of k-clique percolation

    Get PDF
    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social- and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.Comment: 20 pages, 6 figure

    Ground truth? Concept-based communities versus the external classification of physics manuscripts

    Full text link
    Community detection techniques are widely used to infer hidden structures within interconnected systems. Despite demonstrating high accuracy on benchmarks, they reproduce the external classification for many real-world systems with a significant level of discrepancy. A widely accepted reason behind such outcome is the unavoidable loss of non-topological information (such as node attributes) encountered when the original complex system is represented as a network. In this article we emphasize that the observed discrepancies may also be caused by a different reason: the external classification itself. For this end we use scientific publication data which i) exhibit a well defined modular structure and ii) hold an expert-made classification of research articles. Having represented the articles and the extracted scientific concepts both as a bipartite network and as its unipartite projection, we applied modularity optimization to uncover the inner thematic structure. The resulting clusters are shown to partly reflect the author-made classification, although some significant discrepancies are observed. A detailed analysis of these discrepancies shows that they carry essential information about the system, mainly related to the use of similar techniques and methods across different (sub)disciplines, that is otherwise omitted when only the external classification is considered.Comment: 15 pages, 2 figure

    Detecting Cohesive and 2-mode Communities in Directed and Undirected Networks

    Full text link
    Networks are a general language for representing relational information among objects. An effective way to model, reason about, and summarize networks, is to discover sets of nodes with common connectivity patterns. Such sets are commonly referred to as network communities. Research on network community detection has predominantly focused on identifying communities of densely connected nodes in undirected networks. In this paper we develop a novel overlapping community detection method that scales to networks of millions of nodes and edges and advances research along two dimensions: the connectivity structure of communities, and the use of edge directedness for community detection. First, we extend traditional definitions of network communities by building on the observation that nodes can be densely interlinked in two different ways: In cohesive communities nodes link to each other, while in 2-mode communities nodes link in a bipartite fashion, where links predominate between the two partitions rather than inside them. Our method successfully detects both 2-mode as well as cohesive communities, that may also overlap or be hierarchically nested. Second, while most existing community detection methods treat directed edges as though they were undirected, our method accounts for edge directions and is able to identify novel and meaningful community structures in both directed and undirected networks, using data from social, biological, and ecological domains.Comment: Published in the proceedings of WSDM '1

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms
    • …
    corecore