557 research outputs found

    Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm

    Get PDF
    The smooth variable structure filter (ASVSF) has been relatively considered as a new robust predictor-corrector method for estimating the state. In order to effectively utilize it, an SVSF requires the accurate system model, and exact prior knowledge includes both the process and measurement noise statistic. Unfortunately, the system model is always inaccurate because of some considerations avoided at the beginning. Moreover, the small addictive noises are partially known or even unknown. Of course, this limitation can degrade the performance of SVSF or also lead to divergence condition. For this reason, it is proposed through this paper an adaptive smooth variable structure filter (ASVSF) by conditioning the probability density function of a measurementto the unknown parameters at one iteration. This proposed method is assumed to accomplish the localization and direct point-based observation task of a wheeled mobile robot, TurtleBot2. Finally, by realistically simulating it and comparing to a conventional method, the proposed method has been showing a better accuracy and stability in term of root mean square error (RMSE) of the estimated map coordinate (EMC) and estimated path coordinate (EPC)

    A MAPAEKF-SLAM ALGORITHM WITH RECURSIVE MEAN AND COVARIANCE OF PROCESS AND MEASUREMENT NOISE STATISTIC

    Get PDF
    The most popular filtering method used for solving a Simultaneous Localization and Mapping is the Extended Kalman Filter. Essentially, it requires prior stochastic knowledge both the process and measurement noise statistic. In order to avoid this requirement, these noise statistics have been defined at the beginning and kept to be fixed for the whole process. Indeed, it will satisfy the desired robustness in the case of simulation. Oppositely, due to the continuous uncertainty affected by the dynamic system under time integration, this manner is strongly not recommended. The reason is, improperly defined noise will not only degrade the filter performance but also might lead the filter to divergence condition. For this reason, there has been a strong manner well-termed as an adaptive-based strategy that commonly used to equip the classical filter for having an ability to approximate the noise statistic. Of course, by knowing the closely responsive noise statistic, the robustness and accuracy of an EKF can increase. However, most of the existed Adaptive-EKF only considered that the process and measurement noise statistic are characteristically zero-mean and responsive covariances. Accordingly, the robustness of EKF can still be enhanced. This paper presents a proposed method named as a MAPAEKF-SLAM algorithm used for solving the SLAM problem of a mobile robot, Turtlebot2. Sequentially, a classical EKF was estimated using Maximum a Posteriori. However, due to the existence of unobserved value, EKF was also smoothed one time based on the fixed-interval smoothing method. This smoothing step aims to keep-up the derivation process under MAP creation. Realistically, this proposed method was simulated and compared to the conventional one. Finally, it has been showing better accuracy in terms of Root Mean Square Error (RMSE) of both Estimated Map Coordinate (EMC) and Estimated Path Coordinate (EPC).     

    Set-based State Estimation with Probabilistic Consistency Guarantee under Epistemic Uncertainty

    Get PDF
    Consistent state estimation is challenging, especially under the epistemic uncertainties arising from learned (nonlinear) dynamic and observation models. In this work, we propose a set-based estimation algorithm, named Gaussian Process-Zonotopic Kalman Filter (GP-ZKF), that produces zonotopic state estimates while respecting both the epistemic uncertainties in the learned models and aleatoric uncertainties. Our method guarantees probabilistic consistency, in the sense that the true states are bounded by sets (zonotopes) across all time steps, with high probability. We formally relate GP-ZKF with the corresponding stochastic approach, GP-EKF, in the case of learned (nonlinear) models. In particular, when linearization errors and aleatoric uncertainties are omitted and epistemic uncertainties are simplified, GP-ZKF reduces to GP-EKF. We empirically demonstrate our method's efficacy in both a simulated pendulum domain and a real-world robot-assisted dressing domain, where GP-ZKF produced more consistent and less conservative set-based estimates than all baseline stochastic methods.Comment: Published at IEEE Robotics and Automation Letters, 2022. Video: https://www.youtube.com/watch?v=CvIPJlALaFU Copyright: 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any media, including reprinting/republishing for any purposes, creating new works, for resale or redistribution, or reuse of any copyrighted component of this wor

    Robust state estimation methods for robotics applications

    Get PDF
    State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, and even lack of informative data. Some common examples of such situations include wrong feature matching between images or point clouds, false loop-closures due to perceptual aliasing (different places that look similar can confuse the robot), presence of dynamic objects in the environment (odometry algorithms assume a static environment), multipath errors for GNSS (signals for satellites jumping off tall structures like buildings before reaching receivers) and more. This work studies existing and new ways of how standard estimation algorithms like the Kalman filter and factor graphs can be made robust to such adverse conditions without losing performance in ideal outlier-free conditions. The first part of this work demonstrates the importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain. Next, inertial data is integrated into GNSS factor graphs to improve the accuracy and robustness of GNSS factor graphs. Lastly, a combined framework for improving the robustness of non-linear least squares and estimating the inlier noise threshold is proposed and tested with point cloud registration and lidar-inertial odometry algorithms followed by an algorithmic analysis of optimizing generalized robust cost functions with factor graphs for GNSS positioning problem

    RUUMBA: a Range-only, Unscented, Undelayed, Mobile Beacon-Assisted framework for WSN discovery and localization

    Get PDF
    This thesis concerns the problem of localizing the nodes of a WSN using only RSSI range measurements from an autonomous mobile robot. Framing it as a SLAM problem, state of the art techniques such as the Unscented Kalman Filter and GMM undelayed initialization are joined in a single context. Moreover, different path planning strategies for optimal information/energy expenditure ratio are developed and compared simulationally

    Doppler Exploitation in Bistatic mmWave Radio SLAM

    Get PDF
    Networks in 5G and beyond utilize millimeter wave (mmWave) radio signals, large bandwidths, and large antenna arrays, which bring opportunities in jointly localizing the user equipment and mapping the propagation environment, termed as simultaneous localization and mapping (SLAM). Existing approaches mainly rely on delays and angles, and ignore the Doppler, although it contains geometric information. In this paper, we study the benefits of exploiting Doppler in SLAM through deriving the posterior Cram\ub4er-Rao bounds (PCRBs) and formulating the extended Kalman-Poisson multi-Bernoulli sequential filtering solution with Doppler as one of the involved measurements. Both theoretical PCRB analysis and simulation results demonstrate the efficacy of utilizing Doppler

    Doppler Exploitation in Bistatic mmWave Radio SLAM

    Get PDF
    Networks in 5G and beyond utilize millimeter wave (mmWave) radio signals, large bandwidths, and large antenna arrays, which bring opportunities in jointly localizing the user equipment and mapping the propagation environment, termed as simultaneous localization and mapping (SLAM). Existing approaches mainly rely on delays and angles, and ignore the Doppler, although it contains geometric information. In this paper, we study the benefits of exploiting Doppler in SLAM through deriving the posterior Cram\ub4er-Rao bounds (PCRBs) and formulating the extended Kalman-Poisson multi-Bernoulli sequential filtering solution with Doppler as one of the involved measurements. Both theoretical PCRB analysis and simulation results demonstrate the efficacy of utilizing Doppler
    corecore