527 research outputs found

    Space-Time Sampling for Network Observability

    Full text link
    Designing sparse sampling strategies is one of the important components in having resilient estimation and control in networked systems as they make network design problems more cost-effective due to their reduced sampling requirements and less fragile to where and when samples are collected. It is shown that under what conditions taking coarse samples from a network will contain the same amount of information as a more finer set of samples. Our goal is to estimate initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.Comment: Submitted to IEEE TAC (Revised Version

    Near-Optimal Sensor Scheduling for Batch State Estimation: Complexity, Algorithms, and Limits

    Full text link
    In this paper, we focus on batch state estimation for linear systems. This problem is important in applications such as environmental field estimation, robotic navigation, and target tracking. Its difficulty lies on that limited operational resources among the sensors, e.g., shared communication bandwidth or battery power, constrain the number of sensors that can be active at each measurement step. As a result, sensor scheduling algorithms must be employed. Notwithstanding, current sensor scheduling algorithms for batch state estimation scale poorly with the system size and the time horizon. In addition, current sensor scheduling algorithms for Kalman filtering, although they scale better, provide no performance guarantees or approximation bounds for the minimization of the batch state estimation error. In this paper, one of our main contributions is to provide an algorithm that enjoys both the estimation accuracy of the batch state scheduling algorithms and the low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the optimal solution, and this factor is close to the best approximation factor 1/e one can achieve in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that is not only lower than that of the current algorithms for batch state estimation; it is also lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve these results by proving two properties for our batch state estimation error metric, which quantifies the square error of the minimum variance linear estimator of the batch state vector: a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.Comment: Correction of typos in proof

    Event-triggered state observers for sparse sensor noise/attacks

    Get PDF
    This paper describes two algorithms for state reconstruction from sensor measurements that are corrupted with sparse, but otherwise arbitrary, 'noise.' These results are motivated by the need to secure cyber-physical systems against a malicious adversary that can arbitrarily corrupt sensor measurements. The first algorithm reconstructs the state from a batch of sensor measurements while the second algorithm is able to incorporate new measurements as they become available, in the spirit of a Luenberger observer. A distinguishing point of these algorithms is the use of event-triggered techniques to improve the computational performance of the proposed algorithms

    A Satisfiability Modulo Theory Approach to Secure State Reconstruction in Differentially Flat Systems Under Sensor Attacks

    Get PDF
    We address the problem of estimating the state of a differentially flat system from measurements that may be corrupted by an adversarial attack. In cyber-physical systems, malicious attacks can directly compromise the system's sensors or manipulate the communication between sensors and controllers. We consider attacks that only corrupt a subset of sensor measurements. We show that the possibility of reconstructing the state under such attacks is characterized by a suitable generalization of the notion of s-sparse observability, previously introduced by some of the authors in the linear case. We also extend our previous work on the use of Satisfiability Modulo Theory solvers to estimate the state under sensor attacks to the context of differentially flat systems. The effectiveness of our approach is illustrated on the problem of controlling a quadrotor under sensor attacks.Comment: arXiv admin note: text overlap with arXiv:1412.432
    • …
    corecore