6,476 research outputs found

    Quality management approach of product data models for shipbuilding

    Get PDF
    A quality management approach to manage the quality of ship product model data is discussed. It aims to improve and to automate product data model control to make the design and production processes more reliable. This approach is supporting an efficient correction of decient structural designs under visual guidance towards the identied problems. Two international standards ISO STEP-59 and ISO/PAS 26183:2006 are utilized in this thesis

    Flexible roll forming of the variable depth profiles

    Full text link
    This research thesis has been involved in developing a new manufacturing technology for automotive industry

    Pristup zasnovan na performansama u projektovanju prostornih struktura slobodne forme

    Get PDF
    This paper is related to the fact that use of computational tools for form generation, analysis and digital fabrication (CAD/CAM/CAE) in an efficient way enables accurate representation of ideas, simulation of diverse impact and production of rational design solutions. Application of geometrical and numerical computational methods and adoption of performance based priorities enables formal exploration in constrained conditions and improvement of architectural engineering design process. Implementation of advanced technologies in 3D digital design process facilitates production of unconventional complex designs, their verification by construction of physical models and experimental diagnostics, as phase preceding construction of real structure. Within this work concept that provides design of non-standard, context-specific, freeform structure using rapid prototyping technology and 3D optical measurement will be reviewed. The analyzed design solution of roof structure above atrium of National Museum in Belgrade has a function to demonstrate the effectiveness of this approach.Rad je povezan sa činjenicom da je korišćenjem alata za generisanje forme, analizu i digitalnu proizvodnju (CAD/CAM/CAE) na efikasan način omogućena precizna prezentacija ideja, simulacija različitih uticaja i produkcija racionalnih projektnih rešenja. Primena geometrijskih i numeričkih kompjuterskih metoda i usvajanja prioriteta zasnovanih na performansama omogućava formalna istraživanja u ograničenim uslovima i unapređenje procesa projektovanja u oblasti arhitektonskog inženjerstva. Implementacija naprednih digitalnih tehnologija u 3D proces projektovanja omogućava produkciju nekonvencionalnih kompleksnih oblika, njihovu verifikaciju konstrukcijom fizičkih modela i eksperimentalnu dijagnostiku, kao faze koja prethode izgradnji realne strukture. U okvirima ovog rada razmatraće se koncepti koji omogućavaju projektovanje nestandardne, kontekstualno specifične strukture slobodne forme primenom tehnologije brze proizvodnje prototipova i 3D optičkog merenje. Analizirano projektno rešenje krova iznad atrijuma Narodnog Muzeja u Beogradu u funkciji je potvrđivanja efikasnosti ovakvog pristupa

    Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Get PDF
    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included

    Validation of automotive electromagnetic models

    Get PDF
    The problems of modelling the electromagnetic characteristics of vehicles and the experimental validation of such models are considered. The validity of the measurement methods that are applied in model validation exercises is of particular concern. A philosophy for approaching the validation of automotive electromagnetic models of realistic complexity is presented. Mathematical modelling of the key elements of the measurement processes is proposed as the only reliable mechanism for addressing these issues. Areas considered include: basic elements of numerical models; geometrical fidelity requirements for model elements; calibration and use of experimental transducers; the inclusion of cables in electromagnetic models; essential content for vehicle models. A number of practical measurement processes are also investigated using numerical methods, leading to recommendations for improved practices in: calibration of transducers for current measurement at high frequencies; measurement of radiated emissions from vehicles; identification of range requirements for simple methods of determining antenna gain and related characteristics in EMC test facilities. The impact of such measures on the success of model validation studies for automotive applications is demonstrated. It is concluded that experimental results are no less in need of validation than the numerical results that are, more conventionally, judged against them

    Squeak and Rattle Prediction for Robust Product Development in the automotive industry

    Get PDF
    Squeak and rattle are nonstationary, irregular, and impulsive sounds that are audible inside the car cabin. For decades, customer complaints about squeak and rattle have been, and still are, among the top quality issues in the automotive industry. These annoying sounds are perceived as quality defect indications and burden warranty costs to the car manufacturers. Today, the quality improvements regarding the persistent type of sounds in the car, as well as the increasing popularity of electric engines, as green and quiet propulsion solutions, stress the necessity for attenuating annoying sounds like squeak and rattle more than in the past. The economical and robust solutions to this problem are to be sought in the pre-design-freeze phases of the product development and by employing design-concept-related practices. To achieve this goal, prediction and evaluation tools and methods are required to deal with the squeak and rattle quality issues upfront in the product development process. The available tools and methods for the prediction of squeak and rattle sounds in the pre-design-freeze phases of a car development process are not yet sufficiently mature. The complexity of the squeak and rattle events, the existing knowledge gap about the mechanisms behind the squeak and rattle sounds, the lack of accurate simulation and post-processing methods, as well as the computational cost of complex simulations are some of the significant hurdles in this immaturity. This research addresses this problem by identifying a framework for the prediction of squeak and rattle sounds based on a cause-and-effect diagram. The main domains and the elements and the sub-contributors to the problem in each domain within this framework are determined through literature studies, field explorations and descriptive studies conducted on the subject. Further, improvement suggestions for the squeak and rattle evaluation and prediction methods are proposed through prescriptive studies. The applications of some of the proposed methods in the automotive industry are demonstrated and examined in industrial problems.The outcome of this study enhances the understanding of some of the parameters engaged in the squeak and rattle generation. Simulation methods are proposed to actively involve the contributing factors studied in this work for squeak and rattle risk evaluation. To enhance the efficiency and accuracy of the risk evaluation process, methods were investigated and proposed for the system excitation efficiency, modelling accuracy and efficiency and quantification of the response in the time and frequency domains. The demonstrated simulation methods besides the improved understanding of the mechanisms behind the phenomenon can facilitate a more accurate and robust prediction of squeak and rattle risk during the pre-design-freeze stages of the car development

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    Photoelastic Stress Analysis

    Get PDF
    corecore