84,854 research outputs found

    A 2.4 GHz LoRa-Based Protocol for Communication and Energy Harvesting on Industry Machines

    Get PDF
    The fourth industrial revolution is paving the way for Industrial Internet of Things applications where large number of wireless nodes, equipped with sensors and actuators, monitor the production cycle of industrial goods. This paper proposes and analyses LoRaIN, a network architecture and MAC-layer protocol thought for on-demand monitoring of industrial machines. Our proprietary system is an energy-efficient, reliable and scalable solution, where the protocol is built on top of LoRa at 2.4 GHz. Indeed, the low-power characteristics of LoRa allow to reduce energy consumption, while Wireless Power Transfer is used to recharge batteries, avoiding periodic battery replacement. High reliability is obtained through the joint use of Frequency and Time Division Multiple Access. A dynamic LoRaIN scheduler manages the communication and recharging phases depending on the tasks assigned to the nodes, as well as the number of monitoring devices. Performance is measured in terms of network throughput, energy consumption and latency. Results demonstrate that the proposed solution is suitable for monitoring applications of industry machines

    A Highly-Available Multiple Region Multi-access Edge Computing Platform with Traffic Failover

    Get PDF
    One of the main challenges in the Multi-access Edge Computing (MEC) is steering traffic from clients to the nearest MEC instances. If the nearest MEC fails, a failover mechanism should provide mitigation by steering the traffic to the next nearest MEC. There are two conventional approaches to solve this problem, i.e., GeoDNS and Internet Protocol (IP) anycast. GeoDNS is not failover friendly because of the Domain Name System (DNS) cache lifetime. Moreover, the use of a recursive resolver may inaccurately translate the IP address to its geolocation. Thus, this thesis studies and proposes a highly available MEC platform leveraging IP anycast. We built a proof-of-concept using Kubernetes, MetalLB, and a custom health-checker running on the GNS3 network emulator. We measured latency, failure percentage, and Mean Time To Repair (MTTR) to observe the system's behavior. The performance evaluation of the proposed solution shows an average recovery time better than one second. The number of failed requests and latency overhead grows linearly as the failover time and latency between two MECs increases. This thesis demonstrates the effectiveness of IP anycast for MEC applications to steer the traffic to the nearest MEC instance and to enhance resiliency with minor overhead

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201
    corecore