4,521 research outputs found

    Packet Compression in GPU Architectures

    Get PDF
    Graphical processing unit (GPU) can support multiple operations in parallel by executing it on multiple thread unit known as warp i.e. multiple threads running the same instruction. Each time miss happens at private cache of Streaming Multiprocessor (SM), the request is migrated over the network to shared L2 cache and then later down to Memory Controller (MC) for supplying memory block. The interconnect delay becomes a bottleneck due to a large number of requests from different SM and multiple replies from the MCs. The compression technique can be used to mitigate the performance bottleneck caused by a large volume of data. In this work, I apply various compression algorithms and propose a new compression scheme, Data Segment Matching (DSM). I apply approximation to the floating-point elements to improve compressibility and develop a prediction model to identify number of approximation bits. I focus on compression techniques to resolve this bottleneck. The evaluations using a cycle accurate simulator show that this scheme improves Instructions per Cycle (IPC) by 12% on an average across various benchmarks with compressibility 50% in integer type benchmarks and 35% in floating-point type benchmarks when the proposed scheme is applied to packet compression in the interconnection network

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure
    • …
    corecore