79 research outputs found

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur

    A novel two-party semiquantum key distribution protocol based on GHZ-like states

    Full text link
    In this paper, we propose a novel two-party semiquantum key distribution (SQKD) protocol by only employing one kind of GHZ-like state. The proposed SQKD protocol can create a private key shared between one quantum party with unlimited quantum abilities and one classical party with limited quantum abilities without the existence of a third party. The proposed SQKD protocol doesn't need the Hadamard gate or quantum entanglement swapping. Detailed security analysis turns out that the proposed SQKD protocol can resist various famous attacks from an outside eavesdropper, such as the Trojan horse attacks, the entangle-measure attack, the double CNOT attacks, the measure-resend attack and the intercept-resend attack.Comment: 15 pages, 2 figures, 1 tabl

    Multi-party quantum private comparison of size relationship with two third parties based on d-dimensional Bell states

    Full text link
    In this paper, we put forward a multi-party quantum private comparison (MQPC) protocol with two semi-honest third parties (TPs) by adopting d-dimensional Bell states, which can judge the size relationship of private integers from more than two users within one execution of protocol. Each TP is permitted to misbehave on her own but cannot collude with others. In the proposed MQPC protocol, TPs are only required to apply d-dimensional single-particle measurements rather than d-dimensional Bell state measurements. There are no quantum entanglement swapping and unitary operations required in the proposed MQPC protocol. The security analysis validates that the proposed MQPC protocol can resist both the outside attacks and the participant attacks. The proposed MQPC protocol is adaptive for the case that users want to compare the size relationship of their private integers under the control of two supervisors. Furthermore, the proposed MQPC protocol can be used in the strange user environment, because there are not any communication and pre-shared key between each pair of users.Comment: 15 pages, 1 figure, 1 tabl
    • …
    corecore