254,003 research outputs found

    MEXIT: Maximal un-coupling times for stochastic processes

    Get PDF
    Classical coupling constructions arrange for copies of the \emph{same} Markov process started at two \emph{different} initial states to become equal as soon as possible. In this paper, we consider an alternative coupling framework in which one seeks to arrange for two \emph{different} Markov (or other stochastic) processes to remain equal for as long as possible, when started in the \emph{same} state. We refer to this "un-coupling" or "maximal agreement" construction as \emph{MEXIT}, standing for "maximal exit". After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit \MEXIT construction for stochastic processes in discrete time with countable state-space. This construction is generalized to random processes on general state-space running in continuous time, and then exemplified by discussion of \MEXIT for Brownian motions with two different constant drifts.Comment: 28 page

    Convergence analysis of Adaptive Biasing Potential methods for diffusion processes

    Full text link
    This article is concerned with the mathematical analysis of a family of adaptive importance sampling algorithms applied to diffusion processes. These methods, referred to as Adaptive Biasing Potential methods, are designed to efficiently sample the invariant distribution of the diffusion process, thanks to the approximation of the associated free energy function (relative to a reaction coordinate). The bias which is introduced in the dynamics is computed adaptively; it depends on the past of the trajectory of the process through some time-averages. We give a detailed and general construction of such methods. We prove the consistency of the approach (almost sure convergence of well-chosen weighted empirical probability distribution). We justify the efficiency thanks to several qualitative and quantitative additional arguments. To prove these results , we revisit and extend tools from stochastic approximation applied to self-interacting diffusions, in an original context
    • …
    corecore