398,076 research outputs found

    The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition

    Full text link
    We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6--T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7x (5x). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASSJ0518-2828AB and 2MASSJ1404-3159AB) and one is spectrally peculiar (SDSSJ0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6--T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from \approxL8 to \approxT4.5, flux in the Y and J bands increases by \approx0.7 mag and \approx0.5 mag, respectively (the Y- and J-band "bumps"), while flux in the H, K, and L' bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0--1.3 micron. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color--magnitude diagram just blueward of the late-L/early-T sequence. This "L/T gap" occurs at MKO(J-H) = 0.1--0.3 mag, MKO(J-K) = 0.0--0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.Comment: Accepted to ApJ. New arXiv posting includes 4 new parallaxes and an overall improvement in precision of 1.3x thanks to additional CFHT astrometry for many targets. All data compiled in this paper (and more) are available online: http://www.cfa.harvard.edu/~tdupuy/pl

    Quantifying Confidence in DFT Predicted Surface Pourbaix Diagrams of Transition Metal Electrode-Electrolyte Interfaces

    Full text link
    Density Functional Theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the BEEF-vdW exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the Oxygen Reduction Reaction (ORR). We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH^* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O^*, and find the trend Ru>Rh>Ir>Pt>Pd for (111) metal facets, where Ru binds OH^* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating c-values to quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric using which certain experimentally observed surface phases and peak assignments can be better rationalized.Comment: 21 pages, 8 figures and Supporting Informatio

    Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    Get PDF
    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be `read' out.Comment: 4 pages, 4 figure

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    Optimized Double-well quantum interferometry with Gaussian squeezed-states

    Full text link
    A Mach-Zender interferometer with a gaussian number-difference squeezed input state can exhibit sub-shot-noise phase resolution over a large phase-interval. We obtain the optimal level of squeezing for a given phase-interval Δθ0\Delta\theta_0 and particle number NN, with the resulting phase-estimation uncertainty smoothly approaching 3.5/N3.5/N as Δθ0\Delta\theta_0 approaches 10/N, achieved with highly squeezed states near the Fock regime. We then analyze an adaptive measurement scheme which allows any phase on (π/2,π/2)(-\pi/2,\pi/2) to be measured with a precision of 3.5/N3.5/N requiring only a few measurements, even for very large NN. We obtain an asymptotic scaling law of Δθ(2.1+3.2ln(ln(NtottanΔθ0)))/Ntot\Delta\theta\approx (2.1+3.2\ln(\ln(N_{tot}\tan\Delta\theta_0)))/N_{tot}, resulting in a final precision of 10/Ntot\approx 10/N_{tot}. This scheme can be readily implemented in a double-well Bose-Einstein condensate system, as the optimal input states can be obtained by adiabatic manipulation of the double-well ground state.Comment: updated versio

    Model independent sum rules for B-> pi K decays

    Get PDF
    We provide a set of sum rules relating CP-averaged branching ratios and CP-asymmetries of the BπKB \to \pi K modes. They prove to be useful as a mechanism to `test' experimental data given our expectations of the size of isospin breaking. A set of observables emerges providing a simpler interpretation of data in terms of isospin breaking. Moreover, the derivation is done in a completely model independent way, i.e., they can accommodate also New Physics contributions.Comment: 17 pages, 9 figure
    corecore