11,869 research outputs found

    ‘In the game’? Embodied subjectivity in gaming environments

    Get PDF
    Human-computer interactions are increasingly using more (or all) of the body as a control device. We identify a convergence between everyday bodily actions and activity within digital environments, and a trend towards incorporating natural or mimetic form of movement into gaming devices. We go on to reflect on the nature of player ‘embodiment’ in digital gaming environments by applying insights from the phenomenology of Maurice Merleau-Ponty. Three conditions for digital embodiment are proposed, with implications for Calleja’s (2011) Player Involvement Model (PIM) of gaming discussed

    Low Cost Open Source Modal Virtual Environment Interfaces Using Full Body Motion Tracking and Hand Gesture Recognition

    Get PDF
    Virtual environments provide insightful and meaningful ways to explore data sets through immersive experiences. One of the ways immersion is achieved is through natural interaction methods instead of only a keyboard and mouse. Intuitive tracking systems for natural interfaces suitable for such environments are often expensive. Recently however, devices such as gesture tracking gloves and skeletal tracking systems have emerged in the consumer market. This project integrates gestural interfaces into an open source virtual reality toolkit using consumer grade input devices and generates a set of tools to enable multimodal gestural interface creation. The AnthroTronix AcceleGlove is used to augment body tracking data from a Microsoft Kinect with fine grained hand gesture data. The tools are found to be useful as a sample gestural interface is implemented using them. The project concludes by suggesting studies targeting gestural interfaces using such devices as well as other areas for further research

    Low Cost Open Source Modal Virtual Environment Interfaces Using Full Body Motion Tracking and Hand Gesture Recognition

    Get PDF
    Virtual environments provide insightful and meaningful ways to explore data sets through immersive experiences. One of the ways immersion is achieved is through natural interaction methods instead of only a keyboard and mouse. Intuitive tracking systems for natural interfaces suitable for such environments are often expensive. Recently however, devices such as gesture tracking gloves and skeletal tracking systems have emerged in the consumer market. This project integrates gestural interfaces into an open source virtual reality toolkit using consumer grade input devices and generates a set of tools to enable multimodal gestural interface creation. The AnthroTronix AcceleGlove is used to augment body tracking data from a Microsoft Kinect with fine grained hand gesture data. The tools are found to be useful as a sample gestural interface is implemented using them. The project concludes by suggesting studies targeting gestural interfaces using such devices as well as other areas for further research

    Design and Evaluation of Menu Systems for Immersive Virtual Environments

    Get PDF
    Interfaces for system control tasks in virtual environments (VEs) have not been extensively studied. This paper focuses on various types of menu systems to be used in such environments. We describe the design of the TULIP menu, a menu system using Pinch Gloves™, and compare it to two common alternatives: floating menus and pen and tablet menus. These three menus were compared in an empirical evaluation. The pen and tablet menu was found to be significantly faster, while users had a preference for TULIP. Subjective discomfort levels were also higher with the floating menus and pen and tablet

    From ‘hands up’ to ‘hands on’: harnessing the kinaesthetic potential of educational gaming

    Get PDF
    Traditional approaches to distance learning and the student learning journey have focused on closing the gap between the experience of off-campus students and their on-campus peers. While many initiatives have sought to embed a sense of community, create virtual learning environments and even build collaborative spaces for team-based assessment and presentations, they are limited by technological innovation in terms of the types of learning styles they support and develop. Mainstream gaming development – such as with the Xbox Kinect and Nintendo Wii – have a strong element of kinaesthetic learning from early attempts to simulate impact, recoil, velocity and other environmental factors to the more sophisticated movement-based games which create a sense of almost total immersion and allow untethered (in a technical sense) interaction with the games’ objects, characters and other players. Likewise, gamification of learning has become a critical focus for the engagement of learners and its commercialisation, especially through products such as the Wii Fit. As this technology matures, there are strong opportunities for universities to utilise gaming consoles to embed levels of kinaesthetic learning into the student experience – a learning style which has been largely neglected in the distance education sector. This paper will explore the potential impact of these technologies, to broadly imagine the possibilities for future innovation in higher education

    A First Step Towards Nuance-Oriented Interfaces for Virtual Environments

    Get PDF
    Designing usable interfaces for virtual environments (VEs) is not a trivial task. Much of the difficulty stems from the complexity and volume of the input data. Many VEs, in the creation of their interfaces, ignore much of the input data as a result of this. Using machine learning (ML), we introduce the notion of a nuance that can be used to increase the precision and power of a VE interface. An experiment verifying the existence of nuances using a neural network (NN) is discussed and a listing of guidelines to follow is given. We also review reasons why traditional ML techniques are difficult to apply to this problem
    corecore