155,790 research outputs found

    Memento Mori: The development and validation of the Death Reflection Scale

    Get PDF
    Despite its potential for advancing organizational behavior (OB) research, the topic of death awareness has been vastly understudied. Moreover, research on death awareness has predominantly focused on the anxiety‐provoking aspect of death‐related cognitions, thus overlooking the positive aspect of death awareness, death reflection. This gap is exacerbated by the lack of a valid research instrument to measure death reflection. To address this issue, we offer a systematic conceptualization of death reflection, develop the Death Reflection Scale, and assess its psychometric properties across four studies. Further, using a sample of 268 firefighters, we examine whether death reflection buffers the detrimental impact of mortality cues at work on employee well‐being and safety performance. Results provide strong support for the psychometric properties of the Death Reflection Scale. Further, moderation analysis indicates death reflection weakens the negative effect of mortality cues on firefighters' safety performance. Overall, these findings suggest the newly developed Death Reflection Scale will prove useful in future research on death‐related cognitions

    How Registries Can Help Performance Measurement Improve Care

    Get PDF
    Suggests ways to better utilize databases of clinical information to evaluate care processes and outcomes and improve measurements of healthcare quality and costs, comparative clinical effectiveness research, and medical product safety surveillance

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    A neural network for mining large volumes of time series data

    Get PDF
    Efficiently mining large volumes of time series data is amongst the most challenging problems that are fundamental in many fields such as industrial process monitoring, medical data analysis and business forecasting. This paper discusses a high-performance neural network for mining large time series data set and some practical issues on time series data mining. Examples of how this technology is used to search the engine data within a major UK eScience Grid project (DAME) for supporting the maintenance of Rolls-Royce aero-engine are presented

    A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties.

    Get PDF
    BackgroundThe U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR) Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS) interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis.DesignWe developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as "CDS opportunities," might impact each performance gap and the extent to which each CDS opportunity is compatible with specialists' clinical workflows. The protocol was tested by expert panels representing four clinical specialties: oncology, orthopedic surgery, interventional cardiology, and pediatrics
    corecore