41 research outputs found

    Article Segmentation in Digitised Newspapers

    Get PDF
    Digitisation projects preserve and make available vast quantities of historical text. Among these, newspapers are an invaluable resource for the study of human culture and history. Article segmentation identifies each region in a digitised newspaper page that contains an article. Digital humanities, information retrieval (IR), and natural language processing (NLP) applications over digitised archives improve access to text and allow automatic information extraction. The lack of article segmentation impedes these applications. We contribute a thorough review of the existing approaches to article segmentation. Our analysis reveals divergent interpretations of the task, and inconsistent and often ambiguously defined evaluation metrics, making comparisons between systems challenging. We solve these issues by contributing a detailed task definition that examines the nuances and intricacies of article segmentation that are not immediately apparent. We provide practical guidelines on handling borderline cases and devise a new evaluation framework that allows insightful comparison of existing and future approaches. Our review also reveals that the lack of large datasets hinders meaningful evaluation and limits machine learning approaches. We solve these problems by contributing a distant supervision method for generating large datasets for article segmentation. We manually annotate a portion of our dataset and show that our method produces article segmentations over characters nearly as well as costly human annotators. We reimplement the seminal textual approach to article segmentation (Aiello and Pegoretti, 2006) and show that it does not generalise well when evaluated on a large dataset. We contribute a framework for textual article segmentation that divides the task into two distinct phases: block representation and clustering. We propose several techniques for block representation and contribute a novel highly-compressed semantic representation called similarity embeddings. We evaluate and compare different clustering techniques, and innovatively apply label propagation (Zhu and Ghahramani, 2002) to spread headline labels to similar blocks. Our similarity embeddings and label propagation approach substantially outperforms Aiello and Pegoretti but still falls short of human performance. Exploring visual approaches to article segmentation, we reimplement and analyse the state-of-the-art Bansal et al. (2014) approach. We contribute an innovative 2D Markov model approach that captures reading order dependencies and reduces the structured labelling problem to a Markov chain that we decode with Viterbi (1967). Our approach substantially outperforms Bansal et al., achieves accuracy as good as human annotators, and establishes a new state of the art in article segmentation. Our task definition, evaluation framework, and distant supervision dataset will encourage progress in the task of article segmentation. Our state-of-the-art textual and visual approaches will allow sophisticated IR and NLP applications over digitised newspaper archives, supporting research in the digital humanities

    A task-and-technique centered survey on visual analytics for deep learning model engineering

    Get PDF
    Although deep neural networks have achieved state-of-the-art performance in several artificial intelligence applications in the past decade, they are still hard to understand. In particular, the features learned by deep networks when determining whether a given input belongs to a specific class are only implicitly described concerning a considerable number of internal model parameters. This makes it harder to construct interpretable hypotheses of what the network is learning and how it is learning both of which are essential when designing and improving a deep model to tackle a particular learning task. This challenge can be addressed by the use of visualization tools that allow machine learning experts to explore which components of a network are learning useful features for a pattern recognition task, and also to identify characteristics of the network that can be changed to improve its performance. We present a review of modern approaches aiming to use visual analytics and information visualization techniques to understand, interpret, and fine-tune deep learning models. For this, we propose a taxonomy of such approaches based on whether they provide tools for visualizing a network's architecture, to facilitate the interpretation and analysis of the training process, or to allow for feature understanding. Next, we detail how these approaches tackle the tasks above for three common deep architectures: deep feedforward networks, convolutional neural networks, and recurrent neural networks. Additionally, we discuss the challenges faced by each network architecture and outline promising topics for future research in visualization techniques for deep learning models. (C) 2018 Elsevier Ltd. All rights reserved.</p

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Apprentissage discriminant des modèles continus en traduction automatique

    Get PDF
    Over the past few years, neural network (NN) architectures have been successfully applied to many Natural Language Processing (NLP) applications, such as Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT).For the language modeling task, these models consider linguistic units (i.e words and phrases) through their projections into a continuous (multi-dimensional) space, and the estimated distribution is a function of these projections. Also qualified continuous-space models (CSMs), their peculiarity hence lies in this exploitation of a continuous representation that can be seen as an attempt to address the sparsity issue of the conventional discrete models. In the context of SMT, these echniques have been applied on neural network-based language models (NNLMs) included in SMT systems, and oncontinuous-space translation models (CSTMs). These models have led to significant and consistent gains in the SMT performance, but are also considered as very expensive in training and inference, especially for systems involving large vocabularies. To overcome this issue, Structured Output Layer (SOUL) and Noise Contrastive Estimation (NCE) have been proposed; the former modifies the standard structure on vocabulary words, while the latter approximates the maximum-likelihood estimation (MLE) by a sampling method. All these approaches share the same estimation criterion which is the MLE ; however using this procedure results in an inconsistency between theobjective function defined for parameter stimation and the way models are used in the SMT application. The work presented in this dissertation aims to design new performance-oriented and global training procedures for CSMs to overcome these issues. The main contributions lie in the investigation and evaluation of efficient training methods for (large-vocabulary) CSMs which aim~:(a) to reduce the total training cost, and (b) to improve the efficiency of these models when used within the SMT application. On the one hand, the training and inference cost can be reduced (using the SOUL structure or the NCE algorithm), or by reducing the number of iterations via a faster convergence. This thesis provides an empirical analysis of these solutions on different large-scale SMT tasks. On the other hand, we propose a discriminative training framework which optimizes the performance of the whole system containing the CSM as a component model. The experimental results show that this framework is efficient to both train and adapt CSM within SMT systems, opening promising research perspectives.Durant ces dernières années, les architectures de réseaux de neurones (RN) ont été appliquées avec succès à de nombreuses applications en Traitement Automatique de Langues (TAL), comme par exemple en Reconnaissance Automatique de la Parole (RAP) ainsi qu'en Traduction Automatique (TA).Pour la tâche de modélisation statique de la langue, ces modèles considèrent les unités linguistiques (c'est-à-dire des mots et des segments) à travers leurs projections dans un espace continu (multi-dimensionnel), et la distribution de probabilité à estimer est une fonction de ces projections.Ainsi connus sous le nom de "modèles continus" (MC), la particularité de ces derniers se trouve dans l'exploitation de la représentation continue qui peut être considérée comme une solution au problème de données creuses rencontré lors de l'utilisation des modèles discrets conventionnels.Dans le cadre de la TA, ces techniques ont été appliquées dans les modèles de langue neuronaux (MLN) utilisés dans les systèmes de TA, et dans les modèles continus de traduction (MCT).L'utilisation de ces modèles se sont traduit par d'importantes et significatives améliorations des performances des systèmes de TA. Ils sont néanmoins très coûteux lors des phrases d'apprentissage et d'inférence, notamment pour les systèmes ayant un grand vocabulaire.Afin de surmonter ce problème, l'architecture SOUL (pour "Structured Output Layer" en anglais) et l'algorithme NCE (pour "Noise Contrastive Estimation", ou l'estimation contrastive bruitée) ont été proposés: le premier modifie la structure standard de la couche de sortie, alors que le second cherche à approximer l'estimation du maximum de vraisemblance (MV) par une méthode d’échantillonnage.Toutes ces approches partagent le même critère d'estimation qui est la log-vraisemblance; pourtant son utilisation mène à une incohérence entre la fonction objectif définie pour l'estimation des modèles, et la manière dont ces modèles seront utilisés dans les systèmes de TA.Cette dissertation vise à concevoir de nouvelles procédures d'entraînement des MC, afin de surmonter ces problèmes.Les contributions principales se trouvent dans l'investigation et l'évaluation des méthodes d'entraînement efficaces pour MC qui visent à: (i) réduire le temps total de l'entraînement, et (ii) améliorer l'efficacité de ces modèles lors de leur utilisation dans les systèmes de TA.D'un côté, le coût d'entraînement et d'inférence peut être réduit (en utilisant l'architecture SOUL ou l'algorithme NCE), ou la convergence peut être accélérée.La dissertation présente une analyse empirique de ces approches pour des tâches de traduction automatique à grande échelle.D'un autre côté, nous proposons un cadre d'apprentissage discriminant qui optimise la performance du système entier ayant incorporé un modèle continu.Les résultats expérimentaux montrent que ce cadre d'entraînement est efficace pour l'apprentissage ainsi que pour l'adaptation des MC au sein des systèmes de TA, ce qui ouvre de nouvelles perspectives prometteuses

    Contrastive pretraining in discourse change detection

    Get PDF
    The thesis presents and evaluates a model for detecting changes in discourses in diachronic text corpora. Detecting and analyzing discourses that typically evolve over a period of time and differ in their manifestations in individual documents is a challenging task, and existing approaches like topic modeling are often not able to reach satisfactory results. One key problem is the difficulty of properly evaluating the results of discourse detection methods, due in large part to the lack of annotated text corpora. The thesis proposes a solution where synthetic datasets containing non-stable discourse patterns are generated from a corpus of news articles. Using the news categories as a proxy for discourses allows both to control the complexity of the data and to evaluate the model results based on the known discourse patterns. The complex task of extracting topics from texts is commonly performed using generative models, which are based on simplifying assumptions regarding the process of data generation. The model presented in the thesis explores instead the potential of deep neural networks, combined with contrastive learning, to be used for discourse detection. The neural network model is first trained using supervised contrastive loss function, which teaches the model to differentiate the input data based on the type of discourse pattern it belongs to. This pretrained model is then employed for both supervised and unsupervised downstream classification tasks, where the goal is to detect changes in the discourse patterns at the timepoint level. The main aim of the thesis is to find out whether contrastive pretraining can be used as a part of a deep learning approach to discourse change detection, and whether the information encoded into the model during contrastive training can generalise to other, closely related domains. The results of the experiments show that contrastive pretraining can be used to encode information that directly relates to its learning goal into the end products of the model, although the learning process is still incomplete. However, the ability of the model to generalise this information in a way that could be useful in the timepoint level classification tasks remains limited. More work is needed to improve the model performance, especially if it is to be used with complex real world datasets
    corecore