17 research outputs found

    Limit theorems for non-Markovian and fractional processes

    Get PDF
    This thesis examines various non-Markovian and fractional processes---rough volatility models, stochastic Volterra equations, Wiener chaos expansions---through the prism of asymptotic analysis. Stochastic Volterra systems serve as a conducive framework encompassing most rough volatility models used in mathematical finance. In Chapter 2, we provide a unified treatment of pathwise large and moderate deviations principles for a general class of multidimensional stochastic Volterra equations with singular kernels, not necessarily of convolution form. Our methodology is based on the weak convergence approach by Budhiraja, Dupuis and Ellis. This powerful approach also enables us to investigate the pathwise large deviations of families of white noise functionals characterised by their Wiener chaos expansion as~Xε=∑n=0∞εnIn(fnε).X^\varepsilon = \sum_{n=0}^{\infty} \varepsilon^n I_n \big(f_n^{\varepsilon} \big). In Chapter 3, we provide sufficient conditions for the large deviations principle to hold in path space, thereby refreshing a problem left open By Pérez-Abreu (1993). Hinging on analysis on Wiener space, the proof involves describing, controlling and identifying the limit of perturbed multiple stochastic integrals. In Chapter 4, we come back to mathematical finance via the route of Malliavin calculus. We present explicit small-time formulae for the at-the-money implied volatility, skew and curvature in a large class of models, including rough volatility models and their multi-factor versions. Our general setup encompasses both European options on a stock and VIX options. In particular, we develop a detailed analysis of the two-factor rough Bergomi model. Finally, in Chapter 5, we consider the large-time behaviour of affine stochastic Volterra equations, an under-developed area in the absence of Markovianity. We leverage on a measure-valued Markovian lift introduced by Cuchiero and Teichmann and the associated notion of generalised Feller property. This setting allows us to prove the existence of an invariant measure for the lift and hence of a stationary distribution for the affine Volterra process, featuring in the rough Heston model.Open Acces

    Nonlinear Dynamics

    Get PDF
    This volume covers a diverse collection of topics dealing with some of the fundamental concepts and applications embodied in the study of nonlinear dynamics. Each of the 15 chapters contained in this compendium generally fit into one of five topical areas: physics applications, nonlinear oscillators, electrical and mechanical systems, biological and behavioral applications or random processes. The authors of these chapters have contributed a stimulating cross section of new results, which provide a fertile spectrum of ideas that will inspire both seasoned researches and students

    Constructive methods of invariant manifolds for kinetic problems

    Get PDF

    Constructive Methods of Invariant Manifolds for Kinetic Problems

    Get PDF
    We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in a most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space (the invariance equation). The equation of motion for immersed manifolds is obtained (the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods for construction of slow invariant manifolds is presented, in particular, the Newton method subject to incomplete linearization is the analogue of KAM methods for dissipative systems. The systematic use of thermodynamics structures and of the quasi--chemical representation allow to construct approximations which are in concordance with physical restrictions. We systematically consider a discrete analogue of the slow (stable) positively invariant manifolds for dissipative systems, invariant grids. Dynamic and static postprocessing procedures give us the opportunity to estimate the accuracy of obtained approximations, and to improve this accuracy significantly. The following examples of applications are presented: Nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn~1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; invariant grids for a two-dimensional catalytic reaction and a four-dimensional oxidation reaction (six species, two balances); universal continuous media description of dilute polymeric solution; the limits of macroscopic description for polymer molecules, etc

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...
    corecore