65 research outputs found

    Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia

    Get PDF
    In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β–frequency band, which moves to the α–frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α– and δ–frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold

    A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics

    Get PDF
    Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions

    Expanding Your Cognitive Capacity: An Assessment of the Neuroplastic Changes Associated with Mindfulness Training and Transcranial Stimulation

    Get PDF
    Given that mindfulness-based training techniques (MBT) stimulates and pushes ones core cognitive control capacity limits, brain stimulation techniques, such as transcranial direct current stimulation (tDCS), can be used to facilitate the ongoing neural patterns of functional connectivity toward long-lasting neuroplastic change. The current study assessed the combined effects of MBT with right frontal tDCS on cognitive control abilities and their corresponding brain patterns of activation using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). This study found an enhancement in working memory and sustained attention performance along with changes in the attention-related P3 component and its theta and alpha oscillatory profiles recorded by EEG. Furthermore, a reconfiguration in the chronnectome of large-scale resting-state networks was observed using resting-state fMRI, in addition to task-related changes in the polymodal neural architecture associated with encoding and adaptation, which may bridge the necessary connections from near to far transfer gains

    DEVELOPMENT OF A CEREBELLAR MEAN FIELD MODEL: THE THEORETICAL FRAMEWORK, THE IMPLEMENTATION AND THE FIRST APPLICATION

    Get PDF
    Brain modeling constantly evolves to improve the accuracy of the simulated brain dynamics with the ambitious aim to build a digital twin of the brain. Specific models tuned on brain regions specific features empower the brain simulations introducing bottom-up physiology properties into data-driven simulators. Despite the cerebellum contains 80 % of the neurons and is deeply involved in a wide range of functions, from sensorimotor to cognitive ones, a specific cerebellar model is still missing. Furthermore, its quasi-crystalline multi-layer circuitry deeply differs from the cerebral cortical one, therefore is hard to imagine a unique general model suitable for the realistic simulation of both cerebellar and cerebral cortex. The present thesis tackles the challenge of developing a specific model for the cerebellum. Specifically, multi-neuron multi-layer mean field (MF) model of the cerebellar network, including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells, was implemented, and validated against experimental data and the corresponding spiking neural network microcircuit model. The cerebellar MF model was built using a system of interdependent equations, where the single neuronal populations and topological parameters were captured by neuron-specific inter- dependent Transfer Functions. The model time resolution was optimized using Local Field Potentials recorded experimentally with high-density multielectrode array from acute mouse cerebellar slices. The present MF model satisfactorily captured the average discharge of different microcircuit neuronal populations in response to various input patterns and was able to predict the changes in Purkinje Cells firing patterns occurring in specific behavioral conditions: cortical plasticity mapping, which drives learning in associative tasks, and Molecular Layer Interneurons feed-forward inhibition, which controls Purkinje Cells activity patterns. The cerebellar multi-layer MF model thus provides a computationally efficient tool that will allow to investigate the causal relationship between microscopic neuronal properties and ensemble brain activity in health and pathological conditions. Furthermore, preliminary attempts to simulate a pathological cerebellum were done in the perspective of introducing our multi-layer cerebellar MF model in whole-brain simulators to realize patient-specific treatments, moving ahead towards personalized medicine. Two preliminary works assessed the relevant impact of the cerebellum on whole-brain dynamics and its role in modulating complex responses in causal connected cerebral regions, confirming that a specific model is required to further investigate the cerebellum-on- cerebrum influence. The framework presented in this thesis allows to develop a multi-layer MF model depicting the features of a specific brain region (e.g., cerebellum, basal ganglia), in order to define a general strategy to build up a pool of biology grounded MF models for computationally feasible simulations. Interconnected bottom-up MF models integrated in large-scale simulators would capture specific features of different brain regions, while the applications of a virtual brain would have a substantial impact on the reality ranging from the characterization of neurobiological processes, subject-specific preoperative plans, and development of neuro-prosthetic devices

    Spatiotemporal techniques in multimodal imaging for brain mapping and epilepsy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThis thesis explored multimodal brain imaging using advanced spatiotemporal techniques. The first set of experiments were based on simulations. Much controversy exists in the literature regarding the differences between magnetoencephalography (MEG) and electroencephalography (EEG}, both practically and theoretically. The differences were explored using simulations that evaluated the expected signal-to-noise ratios from reasonable brain sources. MEG and EEG were found to be complementary, with each modality optimally suited to image activity from different areas of the cortical surface. Consequently, evaluations of epileptic patients and general neuroscience experiments will both benefit from simultaneously collected MEG/EEG. The second set of experiments represent an example of MEG combined with magnetic resonance imaging (MRI) and functional MRI (fMRI) applied to healthy subjects. The study set out to resolve two questions relating to shape perception. First, does the brain activate functional areas sequentially during shape perception, as has been suggested in recent literature? Second, which , if any, functional areas are active time-locked with reaction-time? The study found that functional areas are non-sequentially activated, and that area IT is active time-locked with reaction-time. These two points, coupled with the method for multimodal integration , can help further develop our understanding of shape perception in particular, and cortical dynamics in general for healthy subjects. Broadly, these two studies represent practical guidelines for epilepsy evaluations and brain mapping studies. For epilepsy studies, clinicians could combine MEG and EEG to maximize the probability of finding the source of seizures. For brain mapping in general, EEG, MEG, MRI and fMRI can be combined in the methods outlined here to obtain more sophisticated views of cortical dynamics

    The embodied mind in sleep and dreaming : a theoretical framework and an empirical study of sleep, dreams and memory in meditators and controls

    Full text link
    Les théories récentes de la conscience incarnée (embodiment) soulignent que l'esprit est un processus incarné, impliquant le cerveau, le corps et l'environnement. Plusieurs aspects de la cognition, de l’interaction sensorimotrice avec l’environnement à la pensée abstraite et métaphorique, ont été conceptualisés dans ce paradigme. Le sommeil et le rêve, cependant, ont rarement été abordés par des chercheurs dans le domaine de la conscience incarnée. Cette dissertation vise à montrer, en s’appuyant sur la phénoménologie, la philosophie énactive et des sciences cognitives du sommeil et des rêves, que le rêve est un processus incarné de formation de sens dans le monde onirique. Ce travail comporte trois objectifs principaux : 1) de démontrer que le rêve est incarné; 2) de clarifier les liens entre les expériences corporelles et la formation onirique; et 3) de préciser si la sensibilité corporelle accrue, en tant qu’une compétence entraînable, mène à des changements globaux dans la façon dont l'information est traitée en sommeil. Le premier objectif est une proposition inédite dans la science des rêves. Dans ce travail, j’analyse les études théoriques et empiriques sur le sujet afin de motiver la notion de l’incarnation corporelle du rêve. Je propose un cadre théorique et pratique pour la recherche en neurophénoménologie du sommeil (article I). Je montre que les rêves sont incarnés à plusieurs niveaux. Tout d'abord, de nombreux rêves contiennent des représentations du corps ou du mouvement corporel. Deuxièmement, les rêves sont vécus d’un à la première personne et ont une qualité spatiale. Troisièmement, les rêves sont structurés par l'émotion et l'affect, et sont ainsi enracinés dans le corps. Enfin, le corps du rêveur et le corps onirique ne sont pas indépendants l'un de l'autre : leur perméabilité est illustrée par les rêves intensifiés, les parasomnies (article II) et les études sur l'intégration des stimuli somato-sensoriels dans le contenu des rêves. Le deuxième objectif est d'étudier des exemples concrets dans lesquels les sensations somatiques, ou des altérations dans la perception habituelle du corps, affectent le contenu des rêves. Je procède par une revue de littérature sur l’état actuel des connaissances empiriques sur la paralysie du sommeil, en tant qu’un phénomène illustratif de l'altération dans l'expérience corporelle en sommeil (article II). Je conclus que les expériences corporelles dans le cadre de la paralysie du sommeil (pression sur la poitrine, sensations inhabituelles, et autres) nous informent sur la manière dont le sens altéré du corps modifie la perception de l'environnement, affecte les qualités de la relation intersubjective avec le monde, et illumine les caractéristiques subjectives fondamentales du sens de l'espace. En outre, les résultats de notre étude empirique démontrent que la stimulation somatosensorielle de la cheville en Stade 1 du sommeil et en sommeil paradoxal produit une variété de changements dans le contenu des rêves. Le troisième objectif était de tester si la formation contemplative, qui augmente la conscience corporelle, produit des changements dans l’apprentissage procédural, dans l'architecture du sommeil, dans la consolidation de la mémoire dépendante du sommeil et dans le contenu des rêves. Nous avons démontré (article III) que les méditants Vipassana et les sujets témoins avaient des patrons distincts de consolidation de la mémoire en sommeil : l'amélioration d'une tâche d’apprentissage procédural était associée à la densité des fuseaux du sommeil chez les méditants, tandis que les participants témoins avaient une relation forte entre l’amélioration de la tâche et durée du sommeil paradoxal. En outre, nous avons constaté une fréquence réduite des fuseaux du sommeil chez les méditants, ce qui suggère que la pratique de la méditation centrée sur le corps peut avoir un effet à long terme sur l’organisation et la fonction du sommeil. Dans l'ensemble, les résultats de cette enquête permettent de conclure que le rêve est un processus incarné de formation du sens, texturé par des souvenirs et des émotions, et que le rêveur n'est pas déconnecté de leur corps ou du monde extérieur. En outre, l’entrainement à la conscience corporelle peut produire des changements globaux dans l'architecture du sommeil et dans les processus cognitifs du sommeil, y compris les rêves et la consolidation de la mémoire. Ces résultats ont des implications théoriques et pratiques pour la recherche sur les fonctions du sommeil, des rêves et le rôle du corps dans l'expérience subjective.Recent theories of cognition have stressed that the mind is an embodied process, one involving brain, body, and environment. Many aspects of cognition, from waking sensorimotor coping with the world to other aspects of the mind, such as metaphor and abstract thought, have been explicated under this framework. Sleep and dreaming, however, have only rarely been approached by embodied mind theorists. In this dissertation, I draw on work in phenomenology, enactivism, and the cognitive science of sleep and dreaming, I aim to show that dreaming is an embodied process of sense-making in the dream world. This work has three main goals: 1) to argue that the dreaming mind is embodied; 2) to clarify the links between bodily experiences and oneiric mentation; and 3) to test whether increased bodily awareness as a trainable skill contributes to global changes in the way that the mind treats information in sleep. The first goal is a novel proposal in dream science. In this work, I review evidence for embodied dreaming and propose a theoretical and practical framework for neurophenomenological research (Article I). I propose that dreams are embodied in a number of different ways. First, many dreams contain representations of body or bodily movement. Second, dreams are experienced from a first-person point of view, and have a spatial quality. Third, dreams are structured by emotion and affect, and thus are rooted in the body. Finally, sleeping and dreaming bodies are not independent of each other; their permeability is exemplified by intensified dreams, parasomnias (Article II), and studies of somatosensory stimuli incorporation into dream content. The second goal is to investigate some of the concrete ways in which somatic sensations or alterations in habitual perception of the physical body affect dream content. I review the current state of knowledge on sleep paralysis as an illustration of sleep-dependent alteration in bodily experience (Article II), and conclude that bodily experiences in sleep paralysis (pressure on chest, unusual sensations, and others) provide information about the myriad ways an altered sense of the body changes one’s perception of the environment, affects qualities of one’s intersubjective relationship with the world, and provides insight into the fundamental subjective features of the sense of space. Additionally, results of our empirical study show that somatosensory ankle stimulation at sleep onset and during REM sleep produces a variety of changes in dream content. The third goal is to study whether contemplative training, which has been shown to increase bodily self-awareness, produces changes in procedural learning, sleep architecture, sleep-dependent memory consolidation and dream content. We showed (Article III) that Vipassana meditators and controls had distinct patterns of sleep-dependent memory consolidation: improvement on a procedural learning task was associated with sleep spindle density in meditators, while control participants had a strong relationship between improvement on the task and REM sleep duration. Additionally, we found a reduced sleep spindle frequency in meditators, suggesting that body-based meditation practice may have long-term effects on sleep organisation and function. Overall, the results of this inquiry point to the conclusion that dreaming is an embodied process of sense-making, textured by memories and affect, and that the dreamer is not disconnected from their body or the outside world. Furthermore, training in bodily awareness may produce global changes in sleep architecture and sleep cognition, including dreaming and memory consolidation. These results have theoretical and practical implications for research on functions of sleep, dreams and the role of the body in subjective experience

    Modulating consciousness with acoustic-electric stimulation

    Get PDF

    State Regulation and Executive Function in Traumatic Brain Injury: EEG Correlates of Impairment and Intervention

    Get PDF
    Executive dysfunction is a common and persistent consequence of Traumatic Brain Injury (TBI) and has a significant detrimental impact on social, emotional, and occupational functioning. Abnormalities in EEG measures reflecting the energetic state of the brain are also common following TBI, and rehabilitation approaches such as cognitive and neurofeedback training aim to improve executive function (EF) by facilitating changes in brain state and function. However, the field is lacking a parsimonious and clinically applicable theory of the relationship between brain energetic state and cognition in TBI. The Cognitive Energetic Model (CEM; Sanders, 1983) may address this gap. The CEM provides an explanation of how two aspects of energetic state - arousal (baseline energetic state) and activation (mobilisation of arousal in response to processing demands) - interact with computational factors, effort, and evaluative processes to produce efficient cognitive performance. EEG measures of arousal (eyes-closed global alpha) and activation (changes in delta, theta, alpha, and beta bands between resting or task conditions) provide an empirical basis for investigating the applicability of this model to TBI sequelae and intervention. The aims of this thesis were: 1) to investigate the applicability of the CEM arousal and activation concepts to understanding energetic state abnormalities and their relationship to EF impairment in TBI; and 2) to investigate the effectiveness of a CEM-based neurocognitive training program for improving EF in TBI. Study 1 investigated EEG measures of arousal and activation recorded during eyes-closed and eyes-open resting conditions. Results showed intact arousal, but impaired activation for the TBI group, compared to healthy controls. The TBI group were characterised by reduced resting theta activation and a trend toward increased resting delta activation. Furthermore, enhanced resting delta and alpha activation and reduced resting theta activation were associated with impaired performance on a response inhibition task across groups. Together, the results suggested that it is not baseline resting state, but rather the ability to mobilise energetic state, that is impaired in TBI, and that this is associated with impaired EF

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202
    • …
    corecore