6,064 research outputs found

    Mean field games with controlled jump-diffusion dynamics: Existence results and an illiquid interbank market model

    Full text link
    We study a family of mean field games with a state variable evolving as a multivariate jump diffusion process. The jump component is driven by a Poisson process with a time-dependent intensity function. All coefficients, i.e. drift, volatility and jump size, are controlled. Under fairly general conditions, we establish existence of a solution in a relaxed version of the mean field game and give conditions under which the optimal strategies are in fact Markovian, hence extending to a jump-diffusion setting previous results established in [30]. The proofs rely upon the notions of relaxed controls and martingale problems. Finally, to complement the abstract existence results, we study a simple illiquid inter-bank market model, where the banks can change their reserves only at the jump times of some exogenous Poisson processes with a common constant intensity, and provide some numerical results.Comment: 37 pages, 6 figure

    Sufficient stochastic maximum principle for the optimal control of semi-Markov modulated jump-diffusion with application to Financial optimization

    Get PDF
    The finite state semi-Markov process is a generalization over the Markov chain in which the sojourn time distribution is any general distribution. In this article we provide a sufficient stochastic maximum principle for the optimal control of a semi-Markov modulated jump-diffusion process in which the drift, diffusion and the jump kernel of the jump-diffusion process is modulated by a semi-Markov process. We also connect the sufficient stochastic maximum principle with the dynamic programming equation. We apply our results to finite horizon risk-sensitive control portfolio optimization problem and to a quadratic loss minimization problem.Comment: Forthcoming in Stochastic Analysis and Application
    corecore