164 research outputs found

    Efficient PDE-Constrained optimization under high-dimensional uncertainty using derivative-informed neural operators

    Full text link
    We propose a novel machine learning framework for solving optimization problems governed by large-scale partial differential equations (PDEs) with high-dimensional random parameters. Such optimization under uncertainty (OUU) problems may be computational prohibitive using classical methods, particularly when a large number of samples is needed to evaluate risk measures at every iteration of an optimization algorithm, where each sample requires the solution of an expensive-to-solve PDE. To address this challenge, we propose a new neural operator approximation of the PDE solution operator that has the combined merits of (1) accurate approximation of not only the map from the joint inputs of random parameters and optimization variables to the PDE state, but also its derivative with respect to the optimization variables, (2) efficient construction of the neural network using reduced basis architectures that are scalable to high-dimensional OUU problems, and (3) requiring only a limited number of training data to achieve high accuracy for both the PDE solution and the OUU solution. We refer to such neural operators as multi-input reduced basis derivative informed neural operators (MR-DINOs). We demonstrate the accuracy and efficiency our approach through several numerical experiments, i.e. the risk-averse control of a semilinear elliptic PDE and the steady state Navier--Stokes equations in two and three spatial dimensions, each involving random field inputs. Across the examples, MR-DINOs offer 10310^{3}--107×10^{7} \times reductions in execution time, and are able to produce OUU solutions of comparable accuracies to those from standard PDE based solutions while being over 10×10 \times more cost-efficient after factoring in the cost of construction

    Numerical Methods for PDE Constrained Optimization with Uncertain Data

    Get PDF
    Optimization problems governed by partial differential equations (PDEs) arise in many applications in the form of optimal control, optimal design, or parameter identification problems. In most applications, parameters in the governing PDEs are not deterministic, but rather have to be modeled as random variables or, more generally, as random fields. It is crucial to capture and quantify the uncertainty in such problems rather than to simply replace the uncertain coefficients with their mean values. However, treating the uncertainty adequately and in a computationally tractable manner poses many mathematical challenges. The numerical solution of optimization problems governed by stochastic PDEs builds on mathematical subareas, which so far have been largely investigated in separate communities: Stochastic Programming, Numerical Solution of Stochastic PDEs, and PDE Constrained Optimization. The workshop achieved an impulse towards cross-fertilization of those disciplines which also was the subject of several scientific discussions. It is to be expected that future exchange of ideas between these areas will give rise to new insights and powerful new numerical methods
    corecore