124 research outputs found

    On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering

    Get PDF
    We analyse the exponential stability properties of a class of measure-valued equations arising in nonlinear multi-target filtering problems. We also prove the uniform convergence properties w.r.t. the time parameter of a rather general class of stochastic filtering algorithms, including sequential Monte Carlo type models and mean eld particle interpretation models. We illustrate these results in the context of the Bernoulli and the Probability Hypothesis Density filter, yielding what seems to be the first results of this kind in this subject

    A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces

    Get PDF
    Continuous time Feynman-Kac measures on path spaces are central in applied probability, partial differential equation theory, as well as in quantum physics. This article presents a new duality formula between normalized Feynman-Kac distribution and their mean field particle interpretations. Among others, this formula allows us to design a reversible particle Gibbs-Glauber sampler for continuous time Feynman-Kac integration on path spaces. This result extends the particle Gibbs samplers introduced by Andrieu-Doucet-Holenstein [2] in the context of discrete generation models to continuous time Feynman-Kac models and their interacting jump particle interpretations. We also provide new propagation of chaos estimates for continuous time genealogical tree based particle models with respect to the time horizon and the size of the systems. These results allow to obtain sharp quantitative estimates of the convergence rate to equilibrium of particle Gibbs-Glauber samplers. To the best of our knowledge these results are the first of this kind for continuous time Feynman-Kac measures

    On the concentration properties of Interacting particle processes

    Get PDF
    These lecture notes present some new concentration inequalities for Feynman-Kac particle processes. We analyze different types of stochastic particle models, including particle profile occupation measures, genealogical tree based evolution models, particle free energies, as well as backward Markov chain particle models. We illustrate these results with a series of topics related to computational physics and biology, stochastic optimization, signal processing and bayesian statistics, and many other probabilistic machine learning algorithms. Special emphasis is given to the stochastic modeling and the quantitative performance analysis of a series of advanced Monte Carlo methods, including particle filters, genetic type island models, Markov bridge models, interacting particle Markov chain Monte Carlo methodologies

    Numerical methods for sensitivity analysis of Feynman-Kac models

    Get PDF
    The aim of this work is to provide efficient numerical methods to estimate the gradient of a Feynman-Kac flow with respect to a parameter of the model. The underlying idea is to view a Feynman-Kac flow as an expectation of a product of potential functions along a canonical Markov chain, and to use usual techniques of gradient estimation in Markov chains. Combining this idea with the use of interacting particle methods enables us to obtain two new algorithms that provide tight estimations of the sensitivity of a Feynman-Kac flow. Each algorithm has a linear computational complexity in the number of particles and is demonstrated to be asymptotically consistent. We also carefully analyze the differences between these new algorithms and existing ones. We provide numerical experiments to assess the practical efficiency of the proposed methods and explain how to use them to solve a parameter estimation problem in Hidden Markov Models. To conclude we can say that these algorithms outperform the existing ones in terms of trade-off between computational complexity and estimation quality

    Quantum harmonic oscillators and Feynman-Kac path integrals for linear diffusive particles

    Get PDF
    We propose a new solvable class of multidimensional quantum harmonic oscillators for a linear diffusive particle and a quadratic energy absorbing well associated with a semi-definite positive matrix force. Under natural and easily checked controllability conditions, the ground state and the zero-point energy are explicitly computed in terms of a positive fixed point of a continuous time algebraic Riccati matrix equation. We also present an explicit solution of normalized and time dependent Feynman-Kac measures in terms of a time varying linear dynamical system coupled with a differential Riccati matrix equation. A refined non asymptotic analysis of the stability of these models is developed based on a recently developed Floquet-type representation of time varying exponential semigroups of Riccati matrices. We provide explicit and non asymptotic estimates of the exponential decays to equilibrium of Feynman-Kac semigroups in terms of Wasserstein distances or Boltzmann-relative entropy. For reversible models we develop a series of functional inequalities including de Bruijn identity, Fisher's information decays, log-Sobolev inequalities, and entropy contraction estimates. In this context, we also provide a complete and explicit description of all the spectrum and the excited states of the Hamiltonian, yielding what seems to be the first result of this type for this class of models. We illustrate these formulae with the traditional harmonic oscillator associated with real time Brownian particles and Mehler's formula. The analysis developed in this article can also be extended to solve time dependent Schrodinger equations equipped with time varying linear diffusions and quadratic potential functions

    On the Stability of Positive Semigroups

    Get PDF
    International audienceThe stability and contraction properties of positive integral semigroups on Polish spaces are investigated. Our novel analysis is based on the extension of V-norm contraction methods, associated to functionally weighted Banach spaces for Markov semigroups, to positive semigroups. This methodology is applied to a general class of positive andpossibly time-inhomogeneous bounded integral semigroups and their normalised versions. The spectral theorems that we develop are an extension of Perron-Frobenius and Krein-Rutman theorems for positive operators to a class of time-varying positive semigroups. In the context of time-homogeneous models, the regularity conditions discussed in the present article appear to be necessary and sufficient condition for the existence of leading eigenvalues. We review and illustrate the impact of these results in the context of positive semigroups arising in transport theory, physics, mathematical biology and signal processing

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure
    • …
    corecore