91 research outputs found

    Application of MFBD Algorithms to Image Reconstruction Under Anisoplanatic Conditions

    Get PDF
    All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions

    Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    Get PDF
    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction methods to compensate turbulence effects. While many image reconstruction methods have been proposed, their suitability for use in man-portable embedded systems is uncertain. To be effective, these systems must operate over significant variations in turbulence conditions while subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods have recently been proposed as being well suited for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. Design parameters are selected by parametric evaluation of system performance as factors external to the system are varied. The precise control necessary for such an evaluation is made possible using image sets of turbulence degraded imagery developed using a novel technique for simulating anisoplanatic image formation over long horizontal paths. System performance is statistically evaluated over multiple reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In addition to more general design parameters, the relative performance the bispectrum and the Knox-Thompson phase recovery methods is also compared. As an outcome of this work it can be concluded that speckle-imaging techniques are robust to the variation in turbulence conditions and user controlled parameters expected when operating during the day over long horizontal paths. Speckle imaging systems that incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition, Knox-Thompson phase recover method is shown to produce images in half the time required by the bispectrum. The quality of images reconstructed using Knox-Thompson and bispectrum methods are also found to be nearly identical. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action

    Block Matching and Wiener Filtering Approach to Optical Turbulence Mitigation and Its Application to Simulated and Real Imagery with Quantitative Error Analysis

    Get PDF
    We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged, and the average image is processed with a Wiener filter to provide deconvolution. An important aspect of the proposed method lies in how we model the degradation point spread function (PSF) for the purposes of Wiener filtering. We use a parametric model that takes into account the level of geometric correction achieved during image registration. This is unlike any method we are aware of in the literature. By matching the PSF to the level of registration in this way, the Wiener filter is able to fully exploit the reduced blurring achieved by registration. We also describe a method for estimating the atmospheric coherence diameter (or Fried parameter) from the estimated motion vectors. We provide a detailed performance analysis that illustrates how the key tuning parameters impact system performance. The proposed method is relatively simple computationally, yet it has excellent performance in comparison with state-of-the-art benchmark methods in our study

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging

    Get PDF
    We present a deep learning approach for restoring images degraded by atmospheric optical turbulence. We consider the case of terrestrial imaging over long ranges with a wide field-of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is applied to the observed frames for dewarping, and the resulting images are averaged. A convolutional neural network (CNN) is then employed to perform spatially adaptive restoration. We refer to the proposed TM algorithm as the block matching and CNN (BM-CNN) method. Training the CNN is accomplished using simulated data from a fast turbulence simulation tool capable of producing a large amount of degraded imagery from declared truth images rapidly. Testing is done using independent data simulated with a different well-validated numerical wave-propagation simulator. Our proposed BM-CNN TM method is evaluated in a number of experiments using quantitative metrics. The quantitative analysis is made possible by virtue of having truth imagery from the simulations. A number of restored images are provided for subjective evaluation. We demonstrate that the BM-CNN TM method outperforms the benchmark methods in the scenarios tested

    Inverse problems in astronomical and general imaging

    Get PDF
    The resolution and the quality of an imaged object are limited by four contributing factors. Firstly, the primary resolution limit of a system is imposed by the aperture of an instrument due to the effects of diffraction. Secondly, the finite sampling frequency, the finite measurement time and the mechanical limitations of the equipment also affect the resolution of the images captured. Thirdly, the images are corrupted by noise, a process inherent to all imaging systems. Finally, a turbulent imaging medium introduces random degradations to the signals before they are measured. In astronomical imaging, it is the atmosphere which distorts the wavefronts of the objects, severely limiting the resolution of the images captured by ground-based telescopes. These four factors affect all real imaging systems to varying degrees. All the limitations imposed on an imaging system result in the need to deduce or reconstruct the underlying object distribution from the distorted measured data. This class of problems is called inverse problems. The key to the success of solving an inverse problem is the correct modelling of the physical processes which give rise to the corresponding forward problem. However, the physical processes have an infinite amount of information, but only a finite number of parameters can be used in the model. Information loss is therefore inevitable. As a result, the solution to many inverse problems requires additional information or prior knowledge. The application of prior information to inverse problems is a recurrent theme throughout this thesis. An inverse problem that has been an active research area for many years is interpolation, and there exist numerous techniques for solving this problem. However, many of these techniques neither account for the sampling process of the instrument nor include prior information in the reconstruction. These factors are taken into account in the proposed optimal Bayesian interpolator. The process of interpolation is also examined from the point of view of superresolution, as these processes can be viewed as being complementary. Since the principal effect of atmospheric turbulence on an incoming wavefront is a phase distortion, most of the inverse problem techniques devised for this seek to either estimate or compensate for this phase component. These techniques are classified into computer post-processing methods, adaptive optics (AO) and hybrid techniques. Blind deconvolution is a post-processing technique which uses the speckle images to estimate both the object distribution and the point spread function (PSF), the latter of which is directly related to the phase. The most successful approaches are based on characterising the PSF as the aberrations over the aperture. Since the PSF is also dependent on the atmosphere, it is possible to constrain the solution using the statistics of the atmosphere. An investigation shows the feasibility of this approach. Bispectrum is also a post-processing method which reconstructs the spectrum of the object. The key component for phase preservation is the property of phase closure, and its application as prior information for blind deconvolution is examined. Blind deconvolution techniques utilise only information in the image channel to estimate the phase which is difficult. An alternative method for phase estimation is from a Shack-Hartmann (SH) wavefront sensing channel. However, since phase information is present in both the wavefront sensing and the image channels simultaneously, both of these approaches suffer from the problem that phase information from only one channel is used. An improved estimate of the phase is achieved by a combination of these methods, ensuring that the phase estimation is made jointly from the data in both the image and the wavefront sensing measurements. This formulation, posed as a blind deconvolution framework, is investigated in this thesis. An additional advantage of this approach is that since speckle images are imaged in a narrowband, while wavefront sensing images are captured by a charge-coupled device (CCD) camera at all wavelengths, the splitting of the light does not compromise the light level for either channel. This provides a further incentive for using simultaneous data sets. The effectiveness of using Shack-Hartmann wavefront sensing data for phase estimation relies on the accuracy of locating the data spots. The commonly used method which calculates the centre of gravity of the image is in fact prone to noise and is suboptimal. An improved method for spot location based on blind deconvolution is demonstrated. Ground-based adaptive optics (AO) technologies aim to correct for atmospheric turbulence in real time. Although much success has been achieved, the space- and time-varying nature of the atmosphere renders the accurate measurement of atmospheric properties difficult. It is therefore usual to perform additional post-processing on the AO data. As a result, some of the techniques developed in this thesis are applicable to adaptive optics. One of the methods which utilise elements of both adaptive optics and post-processing is the hybrid technique of deconvolution from wavefront sensing (DWFS). Here, both the speckle images and the SH wavefront sensing data are used. The original proposal of DWFS is simple to implement but suffers from the problem where the magnitude of the object spectrum cannot be reconstructed accurately. The solution proposed for overcoming this is to use an additional set of reference star measurements. This however does not completely remove the original problem; in addition it introduces other difficulties associated with reference star measurements such as anisoplanatism and reduction of valuable observing time. In this thesis a parameterised solution is examined which removes the need for a reference star, as well as offering a potential to overcome the problem of estimating the magnitude of the object

    On the Simulation and Mitigation of Anisoplanatic Optical Turbulence for Long Range Imaging

    Get PDF
    We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods

    Reconstruction of long horizontal-path images under anisoplanatic conditions using multiframe blind deconvolution

    Get PDF
    All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. This work explores the mean square error (MSE) performance of a multiframe blind deconvolution (MFBD) technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate, and severe turbulence conditions. Each set consisted of 1000 simulated turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. A Gaussian noise model-based MFBD algorithm reconstructs objects that showed as much as 40% improvement in MSE with as few as 14 frames and 30 Zernike coefficients used in the reconstruction, despite the presence of anisoplanatism in the data. An MFBD algorithm based on the Poisson noise model required a minimum of 50 frames to achieve significant improvement over the average MSE for the data set. Reconstructed objects show as much as 38% improvement in MSE using 175 frames and 30 Zernike coefficients in the reconstruction
    • 

    corecore