2,588 research outputs found

    Mean square performance evaluation in frequency domain for an improved adaptive feedback cancellation in hearing aids

    Get PDF
    We consider an adaptive linear prediction based feedback canceller for hearing aids that exploits two (an external and a shaped) noise signals for a bias-less adaptive estimation. In particular, the bias in the estimate of the feedback path is reduced by synthesizing the high-frequency spectrum of the reinforced signal using a shaped noise signal. Moreover, a second shaped (probe) noise signal is used to reduce the closed-loop signal correlation between the acoustic input and the loudspeaker signal at low frequencies. A power-transfer-function analysis of the system is provided, from which the effect of the system parameters and adaptive algorithms [normalized least mean square (NLMS) and recursive least square (RLS)] on the rate of convergence, the steady-state behaviour and the stability of the feedback canceller is explicitly found. The derived expressions are verified through computer simulations. It is found that, as compared to feedback canceller without probe noise, the cost of achieving an unbiased estimate of the feedback path using the feedback canceller with probe noise is a higher steady-state misadjustment for the RLS algorithm, whereas a slower convergence and a higher tracking error for the NLMS algorithm

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability

    Adaptive Feedback Cancellation With Band-Limited LPC Vocoder in Digital Hearing Aids

    Get PDF

    Objective Assessment of Machine Learning Algorithms for Speech Enhancement in Hearing Aids

    Get PDF
    Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the performance of the deep learning model was evaluated objectively and compared with that of open Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep Neural Network (DNN) based model. It was found that the RNN model can suppress noise and improve speech understanding better than the conventional hearing aid noise reduction algorithm and the DNN model. The same RNN model was shown to reduce reverberation components with proper training. A real-time implementation of the deep learning model is also discussed

    Adaptive gain processing with offending frequency suppression for digital hearing aids

    Get PDF
    Journal ArticleDigital hearing aids identify acoustic feedback signals and cancel them continuously in a closed loop with an adaptive filter. This scheme facilitates larger hearing aid gain and improves the output sound quality of hearing aids. However, the output sound quality deteriorates as the hearing aid gain is increased. This paper presents two methods to modify the forward path gain in digital hearing aids. The first approach employs a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. The second method of this paper automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the gain processing methods of this paper provide 8 to 12 dB more hearing aid gain than feedback cancelers with fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the gain processing methods of this paper, individually and combined, provide less distortion in the output sound quality than classical feedback cancelers enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss

    Residual feedback suppression with extended model-based postfilters

    Get PDF
    When designing closed-loop electro-acoustic systems, which can commonly be found in hearing aids or public address systems, the most challenging task is canceling and/or suppressing the feedback caused by the acoustic coupling of the transducers of such systems. In many applications, feedback cancelation based on adaptive filters is used for this purpose. However, due to computational complexity such a feedback canceler is often limited in the length of the filter’s impulse response. Consequently, a residual feedback, which is still audible and may lead to system instability, remains in most cases. In this work, we present enhancements for model-based postfilters based on a priori knowledge of the feedback path which can be used cooperatively with the adaptive filter-based feedback cancelation system to suppress residual feedback and improve the overall feedback reduction capability. For this, we adapted an existing reverberation model such that our model additionally considers the presence and the performance of the adaptive filter. We tested the effectiveness of our approach by means of both objective and subjective evaluations

    Feedback suppression in digital hearing instruments

    Get PDF
    • …
    corecore