83,236 research outputs found

    Correcting for misclassification error in gross flows using double sampling: moment-based inference vs. likelihood-based inference

    No full text
    Gross flows are discrete longitudinal data that are defined as transition counts, between a finite number of states, from one point in time to another. We discuss the analysis of gross flows in the presence of misclassification error via double sampling methods. Traditionally, adjusted for misclassification error estimates are obtained using a moment-based estimator. We propose a likelihood-based approach that works by simultaneously modeling the true transition process and the misclassification error process within the context of a missing data problem. Monte-Carlo simulation results indicate that the maximumlikelihood estimator is more efficient than the moment-based estimator

    On valid descriptive inference from non-probability sample

    Full text link
    We examine the conditions under which descriptive inference can be based directly on the observed distribution in a non-probability sample, under both the super-population and quasi-randomisation modelling approaches. Review of existing estimation methods reveals that the traditional formulation of these conditions may be inadequate due to potential issues of under-coverage or heterogeneous mean beyond the assumed model. We formulate unifying conditions that are applicable to both type of modelling approaches. The difficulties of empirically validating the required conditions are discussed, as well as valid inference approaches using supplementary probability sampling. The key message is that probability sampling may still be necessary in some situations, in order to ensure the validity of descriptive inference, but it can be much less resource-demanding provided the presence of a big non-probability sample

    Calibration Using Matrix Completion with Application to Ultrasound Tomography

    Get PDF
    We study the calibration process in circular ultrasound tomography devices where the sensor positions deviate from the circumference of a perfect circle. This problem arises in a variety of applications in signal processing ranging from breast imaging to sensor network localization. We introduce a novel method of calibration/localization based on the time-of-flight (ToF) measurements between sensors when the enclosed medium is homogeneous. In the presence of all the pairwise ToFs, one can easily estimate the sensor positions using multi-dimensional scaling (MDS) method. In practice however, due to the transitional behaviour of the sensors and the beam form of the transducers, the ToF measurements for close-by sensors are unavailable. Further, random malfunctioning of the sensors leads to random missing ToF measurements. On top of the missing entries, in practice an unknown time delay is also added to the measurements. In this work, we incorporate the fact that a matrix defined from all the ToF measurements is of rank at most four. In order to estimate the missing ToFs, we apply a state-of-the-art low-rank matrix completion algorithm, OPTSPACE . To find the correct positions of the sensors (our ultimate goal) we then apply MDS. We show analytic bounds on the overall error of the whole process in the presence of noise and hence deduce its robustness. Finally, we confirm the functionality of our method in practice by simulations mimicking the measurements of a circular ultrasound tomography device.Comment: submitted to IEEE Transaction on Signal Processin
    • …
    corecore