14,199 research outputs found

    Universal Features in the Genome-level Evolution of Protein Domains

    Get PDF
    Protein domains are found on genomes with notable statistical distributions, which bear a high degree of similarity. Previous work has shown how these distributions can be accounted for by simple models, where the main ingredients are probabilities of duplication, innovation, and loss of domains. However, no one so far has addressed the issue that these distributions follow definite trends depending on protein-coding genome size only. We present a stochastic duplication/innovation model, falling in the class of so-called Chinese Restaurant Processes, able to explain this feature of the data. Using only two universal parameters, related to a minimal number of domains and to the relative weight of innovation to duplication, the model reproduces two important aspects: (a) the populations of domain classes (the sets, related to homology classes, containing realizations of the same domain in different proteins) follow common power-laws whose cutoff is dictated by genome size, and (b) the number of domain families is universal and markedly sublinear in genome size. An important ingredient of the model is that the innovation probability decreases with genome size. We propose the possibility to interpret this as a global constraint given by the cost of expanding an increasingly complex interactome. Finally, we introduce a variant of the model where the choice of a new domain relates to its occurrence in genomic data, and thus accounts for fold specificity. Both models have general quantitative agreement with data from hundreds of genomes, which indicates the coexistence of the well-known specificity of proteomes with robust self-organizing phenomena related to the basic evolutionary ``moves'' of duplication and innovation

    The evolution of genetic architectures underlying quantitative traits

    Full text link
    In the classic view introduced by R. A. Fisher, a quantitative trait is encoded by many loci with small, additive effects. Recent advances in QTL mapping have begun to elucidate the genetic architectures underlying vast numbers of phenotypes across diverse taxa, producing observations that sometimes contrast with Fisher's blueprint. Despite these considerable empirical efforts to map the genetic determinants of traits, it remains poorly understood how the genetic architecture of a trait should evolve, or how it depends on the selection pressures on the trait. Here we develop a simple, population-genetic model for the evolution of genetic architectures. Our model predicts that traits under moderate selection should be encoded by many loci with highly variable effects, whereas traits under either weak or strong selection should be encoded by relatively few loci. We compare these theoretical predictions to qualitative trends in the genetics of human traits, and to systematic data on the genetics of gene expression levels in yeast. Our analysis provides an evolutionary explanation for broad empirical patterns in the genetic basis of traits, and it introduces a single framework that unifies the diversity of observed genetic architectures, ranging from Mendelian to Fisherian.Comment: Minor changes in the text; Added supplementary materia

    Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.

    Get PDF
    Many genes can be deleted with little phenotypic consequences. By what mechanism and to what extent the presence of duplicate genes in the genome contributes to this robustness against deletions has been the subject of considerable interest. Here, we exploit the availability of high-density genetic interaction maps to provide direct support for the role of backup compensation, where functionally overlapping duplicates cover for the loss of their paralog. However, we find that the overall contribution of duplicates to robustness against null mutations is low ( approximately 25%). The ability to directly identify buffering paralogs allowed us to further study their properties, and how they differ from non-buffering duplicates. Using environmental sensitivity profiles as well as quantitative genetic interaction spectra as high-resolution phenotypes, we establish that even duplicate pairs with compensation capacity exhibit rich and typically non-overlapping deletion phenotypes, and are thus unable to comprehensively cover against loss of their paralog. Our findings reconcile the fact that duplicates can compensate for each other's loss under a limited number of conditions with the evolutionary instability of genes whose loss is not associated with a phenotypic penalty

    The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    Get PDF
    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct
    corecore