171 research outputs found

    A discrete Laplace-Beltrami operator for simplicial surfaces

    Get PDF
    We define a discrete Laplace-Beltrami operator for simplicial surfaces. It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called ``cotan formula'') except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace-Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay triangulations of piecewise flat surfaces revised and expanded. References added. Some minor changes, typos corrected. v3: fixed inaccuracies in discussion of flip algorithm, corrected attributions, added references, some minor revision to improve expositio

    Computing Curvature and Curvature Normals on Smooth Logically Cartesian Surface Meshes

    Get PDF
    This thesis describes a new approach to computing mean curvature and mean curvature normals on smooth logically Cartesian surface meshes. We begin by deriving a finite-volume formula for one-dimensional curves embedded in two- or three- dimensional space. We show the exact results on curves for specific cases as well as second-order convergence in numerical experiments. We extend this finite-volume formula to surfaces embedded in three-dimensional space. Exact results are again derived for special cases and second-order convergence is shown numerically for more general cases. We show that our formula for computing curvature is an improvement over using the “cotan” formula on a triangulated quadrilateral mesh and is conceptually much simpler than the formula proposed by Liu et al. (“A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes”, Computers and Mathematics with Applications, 2008), and is equivalent in performance
    • …
    corecore